Minstrel / models /transformers.py
sci-m-wang's picture
Upload 15 files
74cb225 verified
import sys
import os
abs_path = os.getcwd()
sys.path.append(abs_path) # Adds higher directory to python modules path.
from transformers import AutoModelForCausalLM, AutoTokenizer
from outlines import models, generate
from pydantic import BaseModel
schema = """
{
"title": "Modules",
"type": "object",
"properties": {
"background": {"type": "boolean"},
"command": {"type": "boolean"},
"suggesstion": {"type": "boolean"},
"goal": {"type": "boolean"},
"examples": {"type": "boolean"},
"constraints": {"type": "boolean"},
"workflow": {"type": "boolean"},
"output_format": {"type": "boolean"},
"skills": {"type": "boolean"},
"style": {"type": "boolean"},
"initialization": {"type": "boolean"}
},
"required": ["background", "command", "suggesstion", "goal", "examples", "constraints", "workflow", "output_format", "skills", "style", "initialization"]
}
"""
class Generator:
def __init__(self, model_path, device):
self.llm = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code = True).to(device)
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code = True)
self.llm = self.llm.eval()
self.model = models.Transformers(self.llm, self.tokenizer)
pass
def generate_response(self, messages):
g = generate.text(self.model)
prompt = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
response = g(prompt)
return response
def json_response(self, messages):
g = generate.json(self.model, schema)
prompt = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
response = g(prompt)
return response