Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,64 +1,20 @@
|
|
1 |
-
from
|
2 |
from transformers import pipeline
|
3 |
-
import torch
|
4 |
-
import os
|
5 |
|
6 |
-
app = Flask(__name__)
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
elif torch.cuda.is_available():
|
12 |
-
device = torch.device("cuda")
|
13 |
-
else:
|
14 |
-
device = torch.device("cpu")
|
15 |
-
print(f"Using device: {device}")
|
16 |
|
17 |
-
|
18 |
-
model_name = "./Qwen2.5-1.5B-Instruct-Local" # or any other model suitable for your needs
|
19 |
-
chatbot_model = pipeline("text-generation", model=model_name, device=device, batch_size=8)
|
20 |
-
# sentiment_model = pipeline("sentiment-analysis", device=device)
|
21 |
-
|
22 |
-
# Store conversation history
|
23 |
-
conversation_history = []
|
24 |
-
|
25 |
-
def generate_response(user_input, sentiment):
|
26 |
-
# if sentiment['label'] == 'NEGATIVE':
|
27 |
-
# prompt = f"The user is upset, respond with empathy and support: {user_input}"
|
28 |
-
# else:
|
29 |
-
# prompt = f"Respond to the following query: {user_input}"
|
30 |
-
|
31 |
-
# Append the user prompt to the conversation history
|
32 |
-
conversation_history.append({"role": "user", "content": prompt})
|
33 |
-
|
34 |
-
# Generate response from the model
|
35 |
-
result = chatbot_model(conversation_history, num_return_sequences=1, max_new_tokens=250)
|
36 |
-
|
37 |
-
# Append the assistant's response to the conversation history
|
38 |
-
conversation_history.append({"role": "assistant", "content": result[0]['generated_text'][-1]['content'] })
|
39 |
-
|
40 |
-
return result[0]['generated_text'][-1]['content']
|
41 |
-
|
42 |
-
|
43 |
-
@app.route('/chat', methods=['POST'])
|
44 |
-
def chat():
|
45 |
-
data = request.json
|
46 |
-
user_input = data.get('message', '')
|
47 |
-
|
48 |
-
if not user_input:
|
49 |
-
return jsonify({'error': 'Please provide a message.'}), 400
|
50 |
-
|
51 |
-
# sentiment = sentiment_model(user_input)[0]
|
52 |
-
response = generate_response(user_input, 'POSITIVE')
|
53 |
-
|
54 |
-
with open(file_path, 'w') as file:
|
55 |
-
file.write("\nConversation History:\n")
|
56 |
-
for item in conversation_history:
|
57 |
-
file.write(f"{item}\n")
|
58 |
-
return jsonify({'response': response , 'sentiment': sentiment})
|
59 |
-
|
60 |
-
@app.route('/history', methods=['GET'])
|
61 |
-
def get_history():
|
62 |
-
return jsonify(conversation_history)
|
63 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
from transformers import pipeline
|
|
|
|
|
3 |
|
|
|
4 |
|
5 |
+
# NOTE - we configure docs_url to serve the interactive Docs at the root path
|
6 |
+
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
7 |
+
app = FastAPI(docs_url="/")
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
pipe = pipeline("text2text-generation", model="google/flan-t5-small")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
+
@app.get("/generate")
|
13 |
+
def generate(text: str):
|
14 |
+
"""
|
15 |
+
Using the text2text-generation pipeline from `transformers`, generate text
|
16 |
+
from the given input text. The model used is `google/flan-t5-small`, which
|
17 |
+
can be found [here](https://huggingface.co/google/flan-t5-small).
|
18 |
+
"""
|
19 |
+
output = pipe(text)
|
20 |
+
return {"output": output[0]["generated_text"]}
|