Spaces:
Running
on
L4
Running
on
L4
Delete CodeFormer/inference_codeformer.py
Browse files
CodeFormer/inference_codeformer.py
DELETED
@@ -1,274 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import argparse
|
4 |
-
import glob
|
5 |
-
import torch
|
6 |
-
from torchvision.transforms.functional import normalize
|
7 |
-
from basicsr.utils import imwrite, img2tensor, tensor2img
|
8 |
-
from basicsr.utils.download_util import load_file_from_url
|
9 |
-
from basicsr.utils.misc import gpu_is_available, get_device
|
10 |
-
from facelib.utils.face_restoration_helper import FaceRestoreHelper
|
11 |
-
from facelib.utils.misc import is_gray
|
12 |
-
|
13 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
14 |
-
|
15 |
-
pretrain_model_url = {
|
16 |
-
'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
|
17 |
-
}
|
18 |
-
|
19 |
-
def set_realesrgan():
|
20 |
-
from basicsr.archs.rrdbnet_arch import RRDBNet
|
21 |
-
from basicsr.utils.realesrgan_utils import RealESRGANer
|
22 |
-
|
23 |
-
use_half = False
|
24 |
-
if torch.cuda.is_available(): # set False in CPU/MPS mode
|
25 |
-
no_half_gpu_list = ['1650', '1660'] # set False for GPUs that don't support f16
|
26 |
-
if not True in [gpu in torch.cuda.get_device_name(0) for gpu in no_half_gpu_list]:
|
27 |
-
use_half = True
|
28 |
-
|
29 |
-
model = RRDBNet(
|
30 |
-
num_in_ch=3,
|
31 |
-
num_out_ch=3,
|
32 |
-
num_feat=64,
|
33 |
-
num_block=23,
|
34 |
-
num_grow_ch=32,
|
35 |
-
scale=2,
|
36 |
-
)
|
37 |
-
upsampler = RealESRGANer(
|
38 |
-
scale=2,
|
39 |
-
model_path="https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth",
|
40 |
-
model=model,
|
41 |
-
tile=args.bg_tile,
|
42 |
-
tile_pad=40,
|
43 |
-
pre_pad=0,
|
44 |
-
half=use_half
|
45 |
-
)
|
46 |
-
|
47 |
-
if not gpu_is_available(): # CPU
|
48 |
-
import warnings
|
49 |
-
warnings.warn('Running on CPU now! Make sure your PyTorch version matches your CUDA.'
|
50 |
-
'The unoptimized RealESRGAN is slow on CPU. '
|
51 |
-
'If you want to disable it, please remove `--bg_upsampler` and `--face_upsample` in command.',
|
52 |
-
category=RuntimeWarning)
|
53 |
-
return upsampler
|
54 |
-
|
55 |
-
if __name__ == '__main__':
|
56 |
-
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
57 |
-
device = get_device()
|
58 |
-
parser = argparse.ArgumentParser()
|
59 |
-
|
60 |
-
parser.add_argument('-i', '--input_path', type=str, default='./inputs/whole_imgs',
|
61 |
-
help='Input image, video or folder. Default: inputs/whole_imgs')
|
62 |
-
parser.add_argument('-o', '--output_path', type=str, default=None,
|
63 |
-
help='Output folder. Default: results/<input_name>_<w>')
|
64 |
-
parser.add_argument('-w', '--fidelity_weight', type=float, default=0.5,
|
65 |
-
help='Balance the quality and fidelity. Default: 0.5')
|
66 |
-
parser.add_argument('-s', '--upscale', type=int, default=2,
|
67 |
-
help='The final upsampling scale of the image. Default: 2')
|
68 |
-
parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces. Default: False')
|
69 |
-
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face. Default: False')
|
70 |
-
parser.add_argument('--draw_box', action='store_true', help='Draw the bounding box for the detected faces. Default: False')
|
71 |
-
# large det_model: 'YOLOv5l', 'retinaface_resnet50'
|
72 |
-
# small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
|
73 |
-
parser.add_argument('--detection_model', type=str, default='retinaface_resnet50',
|
74 |
-
help='Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n, dlib. \
|
75 |
-
Default: retinaface_resnet50')
|
76 |
-
parser.add_argument('--bg_upsampler', type=str, default='None', help='Background upsampler. Optional: realesrgan')
|
77 |
-
parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False')
|
78 |
-
parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
|
79 |
-
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None')
|
80 |
-
parser.add_argument('--save_video_fps', type=float, default=None, help='Frame rate for saving video. Default: None')
|
81 |
-
|
82 |
-
args = parser.parse_args()
|
83 |
-
|
84 |
-
# ------------------------ input & output ------------------------
|
85 |
-
w = args.fidelity_weight
|
86 |
-
input_video = False
|
87 |
-
if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path
|
88 |
-
input_img_list = [args.input_path]
|
89 |
-
result_root = f'results/test_img_{w}'
|
90 |
-
elif args.input_path.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path
|
91 |
-
from basicsr.utils.video_util import VideoReader, VideoWriter
|
92 |
-
input_img_list = []
|
93 |
-
vidreader = VideoReader(args.input_path)
|
94 |
-
image = vidreader.get_frame()
|
95 |
-
while image is not None:
|
96 |
-
input_img_list.append(image)
|
97 |
-
image = vidreader.get_frame()
|
98 |
-
audio = vidreader.get_audio()
|
99 |
-
fps = vidreader.get_fps() if args.save_video_fps is None else args.save_video_fps
|
100 |
-
video_name = os.path.basename(args.input_path)[:-4]
|
101 |
-
result_root = f'results/{video_name}_{w}'
|
102 |
-
input_video = True
|
103 |
-
vidreader.close()
|
104 |
-
else: # input img folder
|
105 |
-
if args.input_path.endswith('/'): # solve when path ends with /
|
106 |
-
args.input_path = args.input_path[:-1]
|
107 |
-
# scan all the jpg and png images
|
108 |
-
input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]')))
|
109 |
-
result_root = f'results/{os.path.basename(args.input_path)}_{w}'
|
110 |
-
|
111 |
-
if not args.output_path is None: # set output path
|
112 |
-
result_root = args.output_path
|
113 |
-
|
114 |
-
test_img_num = len(input_img_list)
|
115 |
-
if test_img_num == 0:
|
116 |
-
raise FileNotFoundError('No input image/video is found...\n'
|
117 |
-
'\tNote that --input_path for video should end with .mp4|.mov|.avi')
|
118 |
-
|
119 |
-
# ------------------ set up background upsampler ------------------
|
120 |
-
if args.bg_upsampler == 'realesrgan':
|
121 |
-
bg_upsampler = set_realesrgan()
|
122 |
-
else:
|
123 |
-
bg_upsampler = None
|
124 |
-
|
125 |
-
# ------------------ set up face upsampler ------------------
|
126 |
-
if args.face_upsample:
|
127 |
-
if bg_upsampler is not None:
|
128 |
-
face_upsampler = bg_upsampler
|
129 |
-
else:
|
130 |
-
face_upsampler = set_realesrgan()
|
131 |
-
else:
|
132 |
-
face_upsampler = None
|
133 |
-
|
134 |
-
# ------------------ set up CodeFormer restorer -------------------
|
135 |
-
net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
|
136 |
-
connect_list=['32', '64', '128', '256']).to(device)
|
137 |
-
|
138 |
-
# ckpt_path = 'weights/CodeFormer/codeformer.pth'
|
139 |
-
ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'],
|
140 |
-
model_dir='weights/CodeFormer', progress=True, file_name=None)
|
141 |
-
checkpoint = torch.load(ckpt_path)['params_ema']
|
142 |
-
net.load_state_dict(checkpoint)
|
143 |
-
net.eval()
|
144 |
-
|
145 |
-
# ------------------ set up FaceRestoreHelper -------------------
|
146 |
-
# large det_model: 'YOLOv5l', 'retinaface_resnet50'
|
147 |
-
# small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
|
148 |
-
if not args.has_aligned:
|
149 |
-
print(f'Face detection model: {args.detection_model}')
|
150 |
-
if bg_upsampler is not None:
|
151 |
-
print(f'Background upsampling: True, Face upsampling: {args.face_upsample}')
|
152 |
-
else:
|
153 |
-
print(f'Background upsampling: False, Face upsampling: {args.face_upsample}')
|
154 |
-
|
155 |
-
face_helper = FaceRestoreHelper(
|
156 |
-
args.upscale,
|
157 |
-
face_size=512,
|
158 |
-
crop_ratio=(1, 1),
|
159 |
-
det_model = args.detection_model,
|
160 |
-
save_ext='png',
|
161 |
-
use_parse=True,
|
162 |
-
device=device)
|
163 |
-
|
164 |
-
# -------------------- start to processing ---------------------
|
165 |
-
for i, img_path in enumerate(input_img_list):
|
166 |
-
# clean all the intermediate results to process the next image
|
167 |
-
face_helper.clean_all()
|
168 |
-
|
169 |
-
if isinstance(img_path, str):
|
170 |
-
img_name = os.path.basename(img_path)
|
171 |
-
basename, ext = os.path.splitext(img_name)
|
172 |
-
print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
|
173 |
-
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
|
174 |
-
else: # for video processing
|
175 |
-
basename = str(i).zfill(6)
|
176 |
-
img_name = f'{video_name}_{basename}' if input_video else basename
|
177 |
-
print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
|
178 |
-
img = img_path
|
179 |
-
|
180 |
-
if args.has_aligned:
|
181 |
-
# the input faces are already cropped and aligned
|
182 |
-
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
|
183 |
-
face_helper.is_gray = is_gray(img, threshold=10)
|
184 |
-
if face_helper.is_gray:
|
185 |
-
print('Grayscale input: True')
|
186 |
-
face_helper.cropped_faces = [img]
|
187 |
-
else:
|
188 |
-
face_helper.read_image(img)
|
189 |
-
# get face landmarks for each face
|
190 |
-
num_det_faces = face_helper.get_face_landmarks_5(
|
191 |
-
only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5)
|
192 |
-
print(f'\tdetect {num_det_faces} faces')
|
193 |
-
# align and warp each face
|
194 |
-
face_helper.align_warp_face()
|
195 |
-
|
196 |
-
# face restoration for each cropped face
|
197 |
-
for idx, cropped_face in enumerate(face_helper.cropped_faces):
|
198 |
-
# prepare data
|
199 |
-
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
200 |
-
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
201 |
-
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
202 |
-
|
203 |
-
try:
|
204 |
-
with torch.no_grad():
|
205 |
-
output = net(cropped_face_t, w=w, adain=True)[0]
|
206 |
-
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
207 |
-
del output
|
208 |
-
torch.cuda.empty_cache()
|
209 |
-
except Exception as error:
|
210 |
-
print(f'\tFailed inference for CodeFormer: {error}')
|
211 |
-
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
|
212 |
-
|
213 |
-
restored_face = restored_face.astype('uint8')
|
214 |
-
face_helper.add_restored_face(restored_face, cropped_face)
|
215 |
-
|
216 |
-
# paste_back
|
217 |
-
if not args.has_aligned:
|
218 |
-
# upsample the background
|
219 |
-
if bg_upsampler is not None:
|
220 |
-
# Now only support RealESRGAN for upsampling background
|
221 |
-
bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0]
|
222 |
-
else:
|
223 |
-
bg_img = None
|
224 |
-
face_helper.get_inverse_affine(None)
|
225 |
-
# paste each restored face to the input image
|
226 |
-
if args.face_upsample and face_upsampler is not None:
|
227 |
-
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler)
|
228 |
-
else:
|
229 |
-
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box)
|
230 |
-
|
231 |
-
# save faces
|
232 |
-
for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)):
|
233 |
-
# save cropped face
|
234 |
-
if not args.has_aligned:
|
235 |
-
save_crop_path = os.path.join(result_root, 'cropped_faces', f'{basename}_{idx:02d}.png')
|
236 |
-
imwrite(cropped_face, save_crop_path)
|
237 |
-
# save restored face
|
238 |
-
if args.has_aligned:
|
239 |
-
save_face_name = f'{basename}.png'
|
240 |
-
else:
|
241 |
-
save_face_name = f'{basename}_{idx:02d}.png'
|
242 |
-
if args.suffix is not None:
|
243 |
-
save_face_name = f'{save_face_name[:-4]}_{args.suffix}.png'
|
244 |
-
save_restore_path = os.path.join(result_root, 'restored_faces', save_face_name)
|
245 |
-
imwrite(restored_face, save_restore_path)
|
246 |
-
|
247 |
-
# save restored img
|
248 |
-
if not args.has_aligned and restored_img is not None:
|
249 |
-
if args.suffix is not None:
|
250 |
-
basename = f'{basename}_{args.suffix}'
|
251 |
-
save_restore_path = os.path.join(result_root, 'final_results', f'{basename}.png')
|
252 |
-
imwrite(restored_img, save_restore_path)
|
253 |
-
|
254 |
-
# save enhanced video
|
255 |
-
if input_video:
|
256 |
-
print('Video Saving...')
|
257 |
-
# load images
|
258 |
-
video_frames = []
|
259 |
-
img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g')))
|
260 |
-
for img_path in img_list:
|
261 |
-
img = cv2.imread(img_path)
|
262 |
-
video_frames.append(img)
|
263 |
-
# write images to video
|
264 |
-
height, width = video_frames[0].shape[:2]
|
265 |
-
if args.suffix is not None:
|
266 |
-
video_name = f'{video_name}_{args.suffix}.png'
|
267 |
-
save_restore_path = os.path.join(result_root, f'{video_name}.mp4')
|
268 |
-
vidwriter = VideoWriter(save_restore_path, height, width, fps, audio)
|
269 |
-
|
270 |
-
for f in video_frames:
|
271 |
-
vidwriter.write_frame(f)
|
272 |
-
vidwriter.close()
|
273 |
-
|
274 |
-
print(f'\nAll results are saved in {result_root}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|