Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
from detect import detect | |
from PIL import Image | |
from io import * | |
import glob | |
from datetime import datetime | |
import os | |
import wget | |
import time | |
def imageInput(device, src): | |
if src == 'Upload your own data.': | |
image_file = st.file_uploader("Upload An Image", type=['png', 'jpeg', 'jpg']) | |
col1, col2 = st.columns(2) | |
if image_file is not None: | |
img = Image.open(image_file) | |
with col1: | |
st.image(img, caption='Uploaded Image', use_column_width='always') | |
ts = datetime.timestamp(datetime.now()) | |
imgpath = os.path.join('data', str(ts)+image_file.name) | |
outputpath = os.path.join('data', os.path.basename(imgpath)) | |
with open(imgpath, mode="wb") as f: | |
f.write(image_file.getbuffer()) | |
#call Model prediction-- | |
model = torch.hub.load('ultralytics/yolov5', 'custom', path='models/YOLOv5m.pt', force_reload=True) | |
model.cuda() if device == 'cuda' else model.cpu() | |
pred = model(imgpath) | |
pred.render() # render bbox in image | |
for im in pred.ims: | |
im_base64 = Image.fromarray(im) | |
im_base64.save(outputpath) | |
#--Display predicton | |
img_ = Image.open(outputpath) | |
with col2: | |
st.image(img_, caption='Model Prediction(s)', use_column_width='always') | |
elif src == 'URL': | |
url = st.text_input('Enter URL ...') | |
if url is not None: | |
image_file = wget.download(url) | |
col1, col2 = st.columns(2) | |
if image_file is not None: | |
img = Image.open(image_file) | |
with col1: | |
st.image(img, caption='Uploaded Image', use_column_width='always') | |
ts = datetime.timestamp(datetime.now()) | |
imgpath = os.path.join('data', str(ts)+image_file.name) | |
outputpath = os.path.join('data', os.path.basename(imgpath)) | |
with open(imgpath, mode="wb") as f: | |
f.write(image_file.getbuffer()) | |
#call Model prediction-- | |
model = torch.hub.load('ultralytics/yolov5', 'custom', path='models/YOLOv5m.pt', force_reload=True) | |
model.cuda() if device == 'cuda' else model.cpu() | |
pred = model(imgpath) | |
pred.render() # render bbox in image | |
for im in pred.ims: | |
im_base64 = Image.fromarray(im) | |
im_base64.save(outputpath) | |
#--Display predicton | |
img_ = Image.open(outputpath) | |
with col2: | |
st.image(img_, caption='Model Prediction(s)', use_column_width='always') | |
def videoInput(device, src): | |
uploaded_video = st.file_uploader("Upload Video", type=['mp4', 'mpeg', 'mov']) | |
if uploaded_video != None: | |
ts = datetime.timestamp(datetime.now()) | |
imgpath = os.path.join('data/uploads', str(ts)+uploaded_video.name) | |
outputpath = os.path.join('data/video_output', os.path.basename(imgpath)) | |
with open(imgpath, mode='wb') as f: | |
f.write(uploaded_video.read()) # save video to disk | |
st_video = open(imgpath, 'rb') | |
video_bytes = st_video.read() | |
st.video(video_bytes) | |
st.write("Uploaded Video") | |
detect(weights="models/yoloTrained.pt", source=imgpath, device=0) if device == 'cuda' else detect(weights="models/YOLOv5m.pt", source=imgpath, device='cpu') | |
st_video2 = open(outputpath, 'rb') | |
video_bytes2 = st_video2.read() | |
st.video(video_bytes2) | |
st.write("Model Prediction") | |
def main(): | |
# -- Sidebar | |
st.sidebar.title('⚙️Options') | |
datasrc = st.sidebar.radio("Select input source.", ['URL', 'Upload your own data.']) | |
option = st.sidebar.radio("Select input type.", ['Image', 'Video'], disabled = True) | |
if torch.cuda.is_available(): | |
deviceoption = st.sidebar.radio("Select compute Device.", ['cpu', 'cuda'], disabled = False, index=1) | |
else: | |
deviceoption = st.sidebar.radio("Select compute Device.", ['cpu', 'cuda'], disabled = True, index=0) | |
# -- End of Sidebar | |
st.header('Unreal Engine 5 Tank Demo') | |
st.subheader('Select the options') | |
if option == "Image": | |
imageInput(deviceoption, datasrc) | |
elif option == "Video": | |
videoInput(deviceoption, datasrc) | |
if __name__ == '__main__': | |
main() | |