seanpedrickcase's picture
Updated packages, models, preparing for use with AWS (in background)
4a190c2
import re
import os
import datetime
from typing import Type, Dict, List, Tuple
import time
from itertools import compress
import pandas as pd
import numpy as np
# Model packages
import torch.cuda
from threading import Thread
from transformers import pipeline, TextIteratorStreamer
# Alternative model sources
#from dataclasses import asdict, dataclass
# Langchain functions
from langchain.prompts import PromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.retrievers import SVMRetriever
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
# For keyword extraction (not currently used)
#import nltk
#nltk.download('wordnet')
from nltk.corpus import stopwords
from nltk.tokenize import RegexpTokenizer
from nltk.stem import WordNetLemmatizer
#from nltk.stem.snowball import SnowballStemmer
from keybert import KeyBERT
# For Name Entity Recognition model
#from span_marker import SpanMarkerModel # Not currently used
# For BM25 retrieval
import bm25s
import Stemmer
#from gensim.corpora import Dictionary
#from gensim.models import TfidfModel, OkapiBM25Model
#from gensim.similarities import SparseMatrixSimilarity
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
from chatfuncs.prompts import instruction_prompt_template_alpaca, instruction_prompt_mistral_orca, instruction_prompt_phi3, instruction_prompt_llama3, instruction_prompt_qwen
import gradio as gr
torch.cuda.empty_cache()
PandasDataFrame = Type[pd.DataFrame]
embeddings = None # global variable setup
vectorstore = None # global variable setup
model_type = None # global variable setup
max_memory_length = 0 # How long should the memory of the conversation last?
full_text = "" # Define dummy source text (full text) just to enable highlight function to load
model = [] # Define empty list for model functions to run
tokenizer = [] # Define empty list for model functions to run
## Highlight text constants
hlt_chunk_size = 12
hlt_strat = [" ", ". ", "! ", "? ", ": ", "\n\n", "\n", ", "]
hlt_overlap = 4
## Initialise NER model ##
ner_model = []#SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-multinerd") # Not currently used
## Initialise keyword model ##
# Used to pull out keywords from chat history to add to user queries behind the scenes
kw_model = pipeline("feature-extraction", model="sentence-transformers/all-MiniLM-L6-v2")
# Currently set gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda
if torch.cuda.is_available():
torch_device = "cuda"
gpu_layers = 100
else:
torch_device = "cpu"
gpu_layers = 0
print("Running on device:", torch_device)
threads = 8 #torch.get_num_threads()
print("CPU threads:", threads)
# Qwen 2 0.5B (small, fast) Model parameters
temperature: float = 0.1
top_k: int = 3
top_p: float = 1
repetition_penalty: float = 1.15
flan_alpaca_repetition_penalty: float = 1.3
last_n_tokens: int = 64
max_new_tokens: int = 1024
seed: int = 42
reset: bool = False
stream: bool = True
threads: int = threads
batch_size:int = 256
context_length:int = 2048
sample = True
class CtransInitConfig_gpu:
def __init__(self,
last_n_tokens=last_n_tokens,
seed=seed,
n_threads=threads,
n_batch=batch_size,
n_ctx=4096,
n_gpu_layers=gpu_layers):
self.last_n_tokens = last_n_tokens
self.seed = seed
self.n_threads = n_threads
self.n_batch = n_batch
self.n_ctx = n_ctx
self.n_gpu_layers = n_gpu_layers
# self.stop: list[str] = field(default_factory=lambda: [stop_string])
def update_gpu(self, new_value):
self.n_gpu_layers = new_value
class CtransInitConfig_cpu(CtransInitConfig_gpu):
def __init__(self):
super().__init__()
self.n_gpu_layers = 0
gpu_config = CtransInitConfig_gpu()
cpu_config = CtransInitConfig_cpu()
class CtransGenGenerationConfig:
def __init__(self, temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repetition_penalty,
seed=seed,
stream=stream,
max_tokens=max_new_tokens
):
self.temperature = temperature
self.top_k = top_k
self.top_p = top_p
self.repeat_penalty = repeat_penalty
self.seed = seed
self.max_tokens=max_tokens
self.stream = stream
def update_temp(self, new_value):
self.temperature = new_value
# Vectorstore funcs
def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings):
print(f"> Total split documents: {len(docs_out)}")
vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings)
'''
#with open("vectorstore.pkl", "wb") as f:
#pickle.dump(vectorstore, f)
'''
#if Path(save_to).exists():
# vectorstore_func.save_local(folder_path=save_to)
#else:
# os.mkdir(save_to)
# vectorstore_func.save_local(folder_path=save_to)
global vectorstore
vectorstore = vectorstore_func
out_message = "Document processing complete"
#print(out_message)
#print(f"> Saved to: {save_to}")
return out_message
# Prompt functions
def base_prompt_templates(model_type = "Qwen 2 0.5B (small, fast)"):
#EXAMPLE_PROMPT = PromptTemplate(
# template="\nCONTENT:\n\n{page_content}\n\nSOURCE: {source}\n\n",
# input_variables=["page_content", "source"],
#)
CONTENT_PROMPT = PromptTemplate(
template="{page_content}\n\n",#\n\nSOURCE: {source}\n\n",
input_variables=["page_content"]
)
# The main prompt:
if model_type == "Qwen 2 0.5B (small, fast)":
INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_qwen, input_variables=['question', 'summaries'])
elif model_type == "Phi 3.5 Mini (larger, slow)":
INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_phi3, input_variables=['question', 'summaries'])
return INSTRUCTION_PROMPT, CONTENT_PROMPT
def write_out_metadata_as_string(metadata_in):
metadata_string = [f"{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in metadata_in] # ['metadata']
return metadata_string
def generate_expanded_prompt(inputs: Dict[str, str], instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings, relevant_flag = True, out_passages = 2): # ,
question = inputs["question"]
chat_history = inputs["chat_history"]
print("relevant_flag in generate_expanded_prompt:", relevant_flag)
if relevant_flag == True:
new_question_kworded = adapt_q_from_chat_history(question, chat_history, extracted_memory) # new_question_keywords,
docs_keep_as_doc, doc_df, docs_keep_out = hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val = 25, out_passages = out_passages, vec_score_cut_off = 0.85, vec_weight = 1, bm25_weight = 1, svm_weight = 1)
else:
new_question_kworded = question
doc_df = pd.DataFrame()
docs_keep_as_doc = []
docs_keep_out = []
if (not docs_keep_as_doc) | (doc_df.empty):
sorry_prompt = """Say 'Sorry, there is no relevant information to answer this question.'"""
return sorry_prompt, "No relevant sources found.", new_question_kworded
# Expand the found passages to the neighbouring context
print("Doc_df columns:", doc_df.columns)
if 'meta_url' in doc_df.columns:
file_type = determine_file_type(doc_df['meta_url'][0])
else:
file_type = determine_file_type(doc_df['source'][0])
# Only expand passages if not tabular data
if (file_type != ".csv") & (file_type != ".xlsx"):
docs_keep_as_doc, doc_df = get_expanded_passages(vectorstore, docs_keep_out, width=3)
# Build up sources content to add to user display
doc_df['meta_clean'] = write_out_metadata_as_string(doc_df["metadata"]) # [f"<b>{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}</b>" for d in doc_df['metadata']]
# Remove meta text from the page content if it already exists there
doc_df['page_content_no_meta'] = doc_df.apply(lambda row: row['page_content'].replace(row['meta_clean'] + ". ", ""), axis=1)
doc_df['content_meta'] = doc_df['meta_clean'].astype(str) + ".<br><br>" + doc_df['page_content_no_meta'].astype(str)
#modified_page_content = [f" Document {i+1} - {word}" for i, word in enumerate(doc_df['page_content'])]
modified_page_content = [f" Document {i+1} - {word}" for i, word in enumerate(doc_df['content_meta'])]
docs_content_string = '<br><br>'.join(modified_page_content)
sources_docs_content_string = '<br><br>'.join(doc_df['content_meta'])#.replace(" "," ")#.strip()
instruction_prompt_out = instruction_prompt.format(question=new_question_kworded, summaries=docs_content_string)
print('Final prompt is: ')
print(instruction_prompt_out)
return instruction_prompt_out, sources_docs_content_string, new_question_kworded
def create_full_prompt(user_input, history, extracted_memory, vectorstore, embeddings, model_type, out_passages, api_model_choice=None, api_key=None, relevant_flag = True):
#if chain_agent is None:
# history.append((user_input, "Please click the button to submit the Huggingface API key before using the chatbot (top right)"))
# return history, history, "", ""
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
history = history or []
if api_model_choice and api_model_choice != "None":
print("API model choice detected")
if api_key:
print("API key detected")
return history, "", None, relevant_flag
else:
return history, "", None, relevant_flag
# Create instruction prompt
instruction_prompt, content_prompt = base_prompt_templates(model_type=model_type)
if not user_input.strip():
user_input = "No user input found"
relevant_flag = False
else:
relevant_flag = True
print("User input:", user_input)
instruction_prompt_out, docs_content_string, new_question_kworded =\
generate_expanded_prompt({"question": user_input, "chat_history": history}, #vectorstore,
instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings, relevant_flag, out_passages)
history.append(user_input)
print("Output history is:", history)
print("Final prompt to model is:",instruction_prompt_out)
return history, docs_content_string, instruction_prompt_out, relevant_flag
# Chat functions
import boto3
import json
from chatfuncs.helper_functions import get_or_create_env_var
# ResponseObject class for AWS Bedrock calls
class ResponseObject:
def __init__(self, text, usage_metadata):
self.text = text
self.usage_metadata = usage_metadata
max_tokens = 4096
AWS_DEFAULT_REGION = get_or_create_env_var('AWS_DEFAULT_REGION', 'eu-west-2')
print(f'The value of AWS_DEFAULT_REGION is {AWS_DEFAULT_REGION}')
bedrock_runtime = boto3.client('bedrock-runtime', region_name=AWS_DEFAULT_REGION)
def call_aws_claude(prompt: str, system_prompt: str, temperature: float, max_tokens: int, model_choice: str) -> ResponseObject:
"""
This function sends a request to AWS Claude with the following parameters:
- prompt: The user's input prompt to be processed by the model.
- system_prompt: A system-defined prompt that provides context or instructions for the model.
- temperature: A value that controls the randomness of the model's output, with higher values resulting in more diverse responses.
- max_tokens: The maximum number of tokens (words or characters) in the model's response.
- model_choice: The specific model to use for processing the request.
The function constructs the request configuration, invokes the model, extracts the response text, and returns a ResponseObject containing the text and metadata.
"""
prompt_config = {
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": max_tokens,
"top_p": 0.999,
"temperature":temperature,
"system": system_prompt,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
],
}
],
}
body = json.dumps(prompt_config)
modelId = model_choice
accept = "application/json"
contentType = "application/json"
request = bedrock_runtime.invoke_model(
body=body, modelId=modelId, accept=accept, contentType=contentType
)
# Extract text from request
response_body = json.loads(request.get("body").read())
text = response_body.get("content")[0].get("text")
response = ResponseObject(
text=text,
usage_metadata=request['ResponseMetadata']
)
# Now you can access both the text and metadata
#print("Text:", response.text)
print("Metadata:", response.usage_metadata)
return response
def produce_streaming_answer_chatbot(history,
full_prompt,
model_type,
temperature=temperature,
relevant_query_bool=True,
max_new_tokens=max_new_tokens,
sample=sample,
repetition_penalty=repetition_penalty,
top_p=top_p,
top_k=top_k
):
#print("Model type is: ", model_type)
#if not full_prompt.strip():
# if history is None:
# history = []
# return history
if relevant_query_bool == False:
out_message = [("","No relevant query found. Please retry your question")]
history.append(out_message)
yield history
return
if model_type == "Qwen 2 0.5B (small, fast)":
# Get the model and tokenizer, and tokenize the user text.
model_inputs = tokenizer(text=full_prompt, return_tensors="pt", return_attention_mask=False).to(torch_device)
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(tokenizer, timeout=120., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=sample,
repetition_penalty=repetition_penalty,
top_p=top_p,
temperature=temperature,
top_k=top_k
)
#print(generate_kwargs)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Pull the generated text from the streamer, and update the model output.
start = time.time()
NUM_TOKENS=0
print('-'*4+'Start Generation'+'-'*4)
history[-1][1] = ""
for new_text in streamer:
try:
if new_text == None: new_text = ""
history[-1][1] += new_text
NUM_TOKENS+=1
yield history
except Exception as e:
print(f"Error during text generation: {e}")
time_generate = time.time() - start
print('\n')
print('-'*4+'End Generation'+'-'*4)
print(f'Num of generated tokens: {NUM_TOKENS}')
print(f'Time for complete generation: {time_generate}s')
print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
elif model_type == "Phi 3.5 Mini (larger, slow)":
#tokens = model.tokenize(full_prompt)
gen_config = CtransGenGenerationConfig()
gen_config.update_temp(temperature)
print(vars(gen_config))
# Pull the generated text from the streamer, and update the model output.
start = time.time()
NUM_TOKENS=0
print('-'*4+'Start Generation'+'-'*4)
output = model(
full_prompt, **vars(gen_config))
history[-1][1] = ""
for out in output:
if "choices" in out and len(out["choices"]) > 0 and "text" in out["choices"][0]:
history[-1][1] += out["choices"][0]["text"]
NUM_TOKENS+=1
yield history
else:
print(f"Unexpected output structure: {out}")
time_generate = time.time() - start
print('\n')
print('-'*4+'End Generation'+'-'*4)
print(f'Num of generated tokens: {NUM_TOKENS}')
print(f'Time for complete generation: {time_generate}s')
print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
elif model_type == "anthropic.claude-3-haiku-20240307-v1:0" or model_type == "anthropic.claude-3-sonnet-20240229-v1:0":
system_prompt = "You are answering questions from the user based on source material. Respond with short, factually correct answers."
try:
print("Calling AWS Claude model")
response = call_aws_claude(full_prompt, system_prompt, temperature, max_tokens, model_type)
except Exception as e:
# If fails, try again after 10 seconds in case there is a throttle limit
print(e)
try:
out_message = "API limit hit - waiting 30 seconds to retry."
print(out_message)
time.sleep(30)
response = call_aws_claude(full_prompt, system_prompt, temperature, max_tokens, model_type)
except Exception as e:
print(e)
return "", history
# Update the conversation history with the new prompt and response
history.append({'role': 'user', 'parts': [full_prompt]})
history.append({'role': 'assistant', 'parts': [response.text]})
# Print the updated conversation history
#print("conversation_history:", conversation_history)
return response, history
# Chat helper functions
def adapt_q_from_chat_history(question, chat_history, extracted_memory, keyword_model=""):#keyword_model): # new_question_keywords,
chat_history_str, chat_history_first_q, chat_history_first_ans, max_memory_length = _get_chat_history(chat_history)
if chat_history_str:
# Keyword extraction is now done in the add_inputs_to_history function
#remove_q_stopwords(str(chat_history_first_q) + " " + str(chat_history_first_ans))
new_question_kworded = str(extracted_memory) + ". " + question #+ " " + new_question_keywords
#extracted_memory + " " + question
else:
new_question_kworded = question #new_question_keywords
#print("Question output is: " + new_question_kworded)
return new_question_kworded
def determine_file_type(file_path):
"""
Determine the file type based on its extension.
Parameters:
file_path (str): Path to the file.
Returns:
str: File extension (e.g., '.pdf', '.docx', '.txt', '.html').
"""
return os.path.splitext(file_path)[1].lower()
def create_doc_df(docs_keep_out):
# Extract content and metadata from 'winning' passages.
content=[]
meta=[]
meta_url=[]
page_section=[]
score=[]
doc_df = pd.DataFrame()
for item in docs_keep_out:
content.append(item[0].page_content)
meta.append(item[0].metadata)
meta_url.append(item[0].metadata['source'])
file_extension = determine_file_type(item[0].metadata['source'])
if (file_extension != ".csv") & (file_extension != ".xlsx"):
page_section.append(item[0].metadata['page_section'])
else: page_section.append("")
score.append(item[1])
# Create df from 'winning' passages
doc_df = pd.DataFrame(list(zip(content, meta, page_section, meta_url, score)),
columns =['page_content', 'metadata', 'page_section', 'meta_url', 'score'])
docs_content = doc_df['page_content'].astype(str)
doc_df['full_url'] = "https://" + doc_df['meta_url']
return doc_df
def hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val, out_passages,
vec_score_cut_off, vec_weight, bm25_weight, svm_weight): # ,vectorstore, embeddings
#vectorstore=globals()["vectorstore"]
#embeddings=globals()["embeddings"]
doc_df = pd.DataFrame()
docs = vectorstore.similarity_search_with_score(new_question_kworded, k=k_val)
print("Docs from similarity search:")
print(docs)
# Keep only documents with a certain score
docs_len = [len(x[0].page_content) for x in docs]
docs_scores = [x[1] for x in docs]
# Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below)
score_more_limit = pd.Series(docs_scores) < vec_score_cut_off
docs_keep = list(compress(docs, score_more_limit))
if not docs_keep:
return [], pd.DataFrame(), []
# Only keep sources that are at least 100 characters long
length_more_limit = pd.Series(docs_len) >= 100
docs_keep = list(compress(docs_keep, length_more_limit))
if not docs_keep:
return [], pd.DataFrame(), []
docs_keep_as_doc = [x[0] for x in docs_keep]
docs_keep_length = len(docs_keep_as_doc)
if docs_keep_length == 1:
content=[]
meta_url=[]
score=[]
for item in docs_keep:
content.append(item[0].page_content)
meta_url.append(item[0].metadata['source'])
score.append(item[1])
# Create df from 'winning' passages
doc_df = pd.DataFrame(list(zip(content, meta_url, score)),
columns =['page_content', 'meta_url', 'score'])
docs_content = doc_df['page_content'].astype(str)
docs_url = doc_df['meta_url']
return docs_keep_as_doc, doc_df, docs_content, docs_url
# Check for if more docs are removed than the desired output
if out_passages > docs_keep_length:
out_passages = docs_keep_length
k_val = docs_keep_length
vec_rank = [*range(1, docs_keep_length+1)]
vec_score = [(docs_keep_length/x)*vec_weight for x in vec_rank]
print("Number of documents remaining: ", docs_keep_length)
# 2nd level check using BM25s package to do keyword search on retrieved passages.
content_keep=[]
for item in docs_keep:
content_keep.append(item[0].page_content)
# Prepare Corpus (Tokenized & Optional Stemming)
corpus = [doc.lower() for doc in content_keep]
#stemmer = SnowballStemmer("english", ignore_stopwords=True) # NLTK stemming not compatible
stemmer = Stemmer.Stemmer("english")
corpus_tokens = bm25s.tokenize(corpus, stopwords="en", stemmer=stemmer)
# Create and Index with BM25s
retriever = bm25s.BM25()
retriever.index(corpus_tokens)
# Query Processing (Stemming applied consistently if used above)
query_tokens = bm25s.tokenize(new_question_kworded.lower(), stemmer=stemmer)
results, scores = retriever.retrieve(query_tokens, corpus=corpus, k=len(corpus)) # Retrieve all docs
for i in range(results.shape[1]):
doc, score = results[0, i], scores[0, i]
print(f"Rank {i+1} (score: {score:.2f}): {doc}")
#print("BM25 results:", results)
#print("BM25 scores:", scores)
# Rank Calculation (Custom Logic for Your BM25 Score)
bm25_rank = list(range(1, len(results[0]) + 1))
#bm25_rank = results[0]#.tolist()[0] # Since you have a single query
bm25_score = [(docs_keep_length / (rank + 1)) * bm25_weight for rank in bm25_rank]
# +1 to avoid division by 0 for rank 0
# Result Ordering (Using the calculated ranks)
pairs = list(zip(bm25_rank, docs_keep_as_doc))
pairs.sort()
bm25_result = [value for rank, value in pairs]
# 3rd level check on retrieved docs with SVM retriever
# Check the type of the embeddings object
embeddings_type = type(embeddings)
print("Type of embeddings object:", embeddings_type)
print("embeddings:", embeddings)
from langchain_huggingface import HuggingFaceEmbeddings
#hf_embeddings = HuggingFaceEmbeddings(**embeddings)
hf_embeddings = embeddings
svm_retriever = SVMRetriever.from_texts(content_keep, hf_embeddings, k = k_val)
svm_result = svm_retriever.invoke(new_question_kworded)
svm_rank=[]
svm_score = []
for vec_item in docs_keep:
x = 0
for svm_item in svm_result:
x = x + 1
if svm_item.page_content == vec_item[0].page_content:
svm_rank.append(x)
svm_score.append((docs_keep_length/x)*svm_weight)
## Calculate final score based on three ranking methods
final_score = [a + b + c for a, b, c in zip(vec_score, bm25_score, svm_score)]
final_rank = [sorted(final_score, reverse=True).index(x)+1 for x in final_score]
# Force final_rank to increment by 1 each time
final_rank = list(pd.Series(final_rank).rank(method='first'))
#print("final rank: " + str(final_rank))
#print("out_passages: " + str(out_passages))
best_rank_index_pos = []
for x in range(1,out_passages+1):
try:
best_rank_index_pos.append(final_rank.index(x))
except IndexError: # catch the error
pass
# Adjust best_rank_index_pos to
best_rank_pos_series = pd.Series(best_rank_index_pos)
docs_keep_out = [docs_keep[i] for i in best_rank_index_pos]
# Keep only 'best' options
docs_keep_as_doc = [x[0] for x in docs_keep_out]
# Make df of best options
doc_df = create_doc_df(docs_keep_out)
print("doc_df:",doc_df)
print("docs_keep_as_doc:",docs_keep_as_doc)
print("docs_keep_out:", docs_keep_out)
return docs_keep_as_doc, doc_df, docs_keep_out
def get_expanded_passages(vectorstore, docs, width):
"""
Extracts expanded passages based on given documents and a width for context.
Parameters:
- vectorstore: The primary data source.
- docs: List of documents to be expanded.
- width: Number of documents to expand around a given document for context.
Returns:
- expanded_docs: List of expanded Document objects.
- doc_df: DataFrame representation of expanded_docs.
"""
from collections import defaultdict
def get_docs_from_vstore(vectorstore):
vector = vectorstore.docstore._dict
return list(vector.items())
def extract_details(docs_list):
docs_list_out = [tup[1] for tup in docs_list]
content = [doc.page_content for doc in docs_list_out]
meta = [doc.metadata for doc in docs_list_out]
return ''.join(content), meta[0], meta[-1]
def get_parent_content_and_meta(vstore_docs, width, target):
#target_range = range(max(0, target - width), min(len(vstore_docs), target + width + 1))
target_range = range(max(0, target), min(len(vstore_docs), target + width + 1)) # Now only selects extra passages AFTER the found passage
parent_vstore_out = [vstore_docs[i] for i in target_range]
content_str_out, meta_first_out, meta_last_out = [], [], []
for _ in parent_vstore_out:
content_str, meta_first, meta_last = extract_details(parent_vstore_out)
content_str_out.append(content_str)
meta_first_out.append(meta_first)
meta_last_out.append(meta_last)
return content_str_out, meta_first_out, meta_last_out
def merge_dicts_except_source(d1, d2):
merged = {}
for key in d1:
if key != "source":
merged[key] = str(d1[key]) + " to " + str(d2[key])
else:
merged[key] = d1[key] # or d2[key], based on preference
return merged
def merge_two_lists_of_dicts(list1, list2):
return [merge_dicts_except_source(d1, d2) for d1, d2 in zip(list1, list2)]
# Step 1: Filter vstore_docs
vstore_docs = get_docs_from_vstore(vectorstore)
doc_sources = {doc.metadata['source'] for doc, _ in docs}
vstore_docs = [(k, v) for k, v in vstore_docs if v.metadata.get('source') in doc_sources]
# Step 2: Group by source and proceed
vstore_by_source = defaultdict(list)
for k, v in vstore_docs:
vstore_by_source[v.metadata['source']].append((k, v))
expanded_docs = []
for doc, score in docs:
search_source = doc.metadata['source']
#if file_type == ".csv" | file_type == ".xlsx":
# content_str, meta_first, meta_last = get_parent_content_and_meta(vstore_by_source[search_source], 0, search_index)
#else:
search_section = doc.metadata['page_section']
parent_vstore_meta_section = [doc.metadata['page_section'] for _, doc in vstore_by_source[search_source]]
search_index = parent_vstore_meta_section.index(search_section) if search_section in parent_vstore_meta_section else -1
content_str, meta_first, meta_last = get_parent_content_and_meta(vstore_by_source[search_source], width, search_index)
meta_full = merge_two_lists_of_dicts(meta_first, meta_last)
expanded_doc = (Document(page_content=content_str[0], metadata=meta_full[0]), score)
expanded_docs.append(expanded_doc)
doc_df = pd.DataFrame()
doc_df = create_doc_df(expanded_docs) # Assuming you've defined the 'create_doc_df' function elsewhere
return expanded_docs, doc_df
def highlight_found_text(search_text: str, full_text: str, hlt_chunk_size:int=hlt_chunk_size, hlt_strat:List=hlt_strat, hlt_overlap:int=hlt_overlap) -> str:
"""
Highlights occurrences of search_text within full_text.
Parameters:
- search_text (str): The text to be searched for within full_text.
- full_text (str): The text within which search_text occurrences will be highlighted.
Returns:
- str: A string with occurrences of search_text highlighted.
Example:
>>> highlight_found_text("world", "Hello, world! This is a test. Another world awaits.")
'Hello, <mark style="color:black;">world</mark>! This is a test. Another <mark style="color:black;">world</mark> awaits.'
"""
def extract_text_from_input(text, i=0):
if isinstance(text, str):
return text.replace(" ", " ").strip()
elif isinstance(text, list):
return text[i][0].replace(" ", " ").strip()
else:
return ""
def extract_search_text_from_input(text):
if isinstance(text, str):
return text.replace(" ", " ").strip()
elif isinstance(text, list):
return text[-1][1].replace(" ", " ").strip()
else:
return ""
full_text = extract_text_from_input(full_text)
search_text = extract_search_text_from_input(search_text)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=hlt_chunk_size,
separators=hlt_strat,
chunk_overlap=hlt_overlap,
)
sections = text_splitter.split_text(search_text)
found_positions = {}
for x in sections:
text_start_pos = 0
while text_start_pos != -1:
text_start_pos = full_text.find(x, text_start_pos)
if text_start_pos != -1:
found_positions[text_start_pos] = text_start_pos + len(x)
text_start_pos += 1
# Combine overlapping or adjacent positions
sorted_starts = sorted(found_positions.keys())
combined_positions = []
if sorted_starts:
current_start, current_end = sorted_starts[0], found_positions[sorted_starts[0]]
for start in sorted_starts[1:]:
if start <= (current_end + 10):
current_end = max(current_end, found_positions[start])
else:
combined_positions.append((current_start, current_end))
current_start, current_end = start, found_positions[start]
combined_positions.append((current_start, current_end))
# Construct pos_tokens
pos_tokens = []
prev_end = 0
for start, end in combined_positions:
if end-start > 15: # Only combine if there is a significant amount of matched text. Avoids picking up single words like 'and' etc.
pos_tokens.append(full_text[prev_end:start])
pos_tokens.append('<mark style="color:black;">' + full_text[start:end] + '</mark>')
prev_end = end
pos_tokens.append(full_text[prev_end:])
return "".join(pos_tokens)
# # Chat history functions
def clear_chat(chat_history_state, sources, chat_message, current_topic):
chat_history_state = []
sources = ''
chat_message = ''
current_topic = ''
return chat_history_state, sources, chat_message, current_topic
def _get_chat_history(chat_history: List[Tuple[str, str]], max_memory_length:int = max_memory_length): # Limit to last x interactions only
if (not chat_history) | (max_memory_length == 0):
chat_history = []
if len(chat_history) > max_memory_length:
chat_history = chat_history[-max_memory_length:]
#print(chat_history)
first_q = ""
first_ans = ""
for human_s, ai_s in chat_history:
first_q = human_s
first_ans = ai_s
#print("Text to keyword extract: " + first_q + " " + first_ans)
break
conversation = ""
for human_s, ai_s in chat_history:
human = f"Human: " + human_s
ai = f"Assistant: " + ai_s
conversation += "\n" + "\n".join([human, ai])
return conversation, first_q, first_ans, max_memory_length
def add_inputs_answer_to_history(user_message, history, current_topic):
if history is None:
history = [("","")]
#history.append((user_message, [-1]))
chat_history_str, chat_history_first_q, chat_history_first_ans, max_memory_length = _get_chat_history(history)
# Only get the keywords for the first question and response, or do it every time if over 'max_memory_length' responses in the conversation
if (len(history) == 1) | (len(history) > max_memory_length):
#print("History after appending is:")
#print(history)
first_q_and_first_ans = str(chat_history_first_q) + " " + str(chat_history_first_ans)
#ner_memory = remove_q_ner_extractor(first_q_and_first_ans)
keywords = keybert_keywords(first_q_and_first_ans, n = 8, kw_model=kw_model)
#keywords.append(ner_memory)
# Remove duplicate words while preserving order
ordered_tokens = set()
result = []
for word in keywords:
if word not in ordered_tokens:
ordered_tokens.add(word)
result.append(word)
extracted_memory = ' '.join(result)
else: extracted_memory=current_topic
print("Extracted memory is:")
print(extracted_memory)
return history, extracted_memory
# Keyword functions
def remove_q_stopwords(question): # Remove stopwords from question. Not used at the moment
# Prepare keywords from question by removing stopwords
text = question.lower()
# Remove numbers
text = re.sub('[0-9]', '', text)
tokenizer = RegexpTokenizer(r'\w+')
text_tokens = tokenizer.tokenize(text)
#text_tokens = word_tokenize(text)
tokens_without_sw = [word for word in text_tokens if not word in stopwords]
# Remove duplicate words while preserving order
ordered_tokens = set()
result = []
for word in tokens_without_sw:
if word not in ordered_tokens:
ordered_tokens.add(word)
result.append(word)
new_question_keywords = ' '.join(result)
return new_question_keywords
def remove_q_ner_extractor(question):
predict_out = ner_model.predict(question)
predict_tokens = [' '.join(v for k, v in d.items() if k == 'span') for d in predict_out]
# Remove duplicate words while preserving order
ordered_tokens = set()
result = []
for word in predict_tokens:
if word not in ordered_tokens:
ordered_tokens.add(word)
result.append(word)
new_question_keywords = ' '.join(result).lower()
return new_question_keywords
def apply_lemmatize(text, wnl=WordNetLemmatizer()):
def prep_for_lemma(text):
# Remove numbers
text = re.sub('[0-9]', '', text)
print(text)
tokenizer = RegexpTokenizer(r'\w+')
text_tokens = tokenizer.tokenize(text)
#text_tokens = word_tokenize(text)
return text_tokens
tokens = prep_for_lemma(text)
def lem_word(word):
if len(word) > 3: out_word = wnl.lemmatize(word)
else: out_word = word
return out_word
return [lem_word(token) for token in tokens]
def keybert_keywords(text, n, kw_model):
tokens_lemma = apply_lemmatize(text)
lemmatised_text = ' '.join(tokens_lemma)
keywords_text = KeyBERT(model=kw_model).extract_keywords(lemmatised_text, stop_words='english', top_n=n,
keyphrase_ngram_range=(1, 1))
keywords_list = [item[0] for item in keywords_text]
return keywords_list
# Gradio functions
def turn_off_interactivity(user_message, history):
return gr.update(value="", interactive=False), history + [[user_message, None]]
def restore_interactivity():
return gr.update(interactive=True)
def update_message(dropdown_value):
return gr.Textbox(value=dropdown_value)
def hide_block():
return gr.Radio(visible=False)
# Vote function
def vote(data: gr.LikeData, chat_history, instruction_prompt_out, model_type):
import os
import pandas as pd
chat_history_last = str(str(chat_history[-1][0]) + " - " + str(chat_history[-1][1]))
response_df = pd.DataFrame(data={"thumbs_up":data.liked,
"chosen_response":data.value,
"input_prompt":instruction_prompt_out,
"chat_history":chat_history_last,
"model_type": model_type,
"date_time": pd.Timestamp.now()}, index=[0])
if data.liked:
print("You upvoted this response: " + data.value)
if os.path.isfile("thumbs_up_data.csv"):
existing_thumbs_up_df = pd.read_csv("thumbs_up_data.csv")
thumbs_up_df_concat = pd.concat([existing_thumbs_up_df, response_df], ignore_index=True).drop("Unnamed: 0",axis=1, errors="ignore")
thumbs_up_df_concat.to_csv("thumbs_up_data.csv")
else:
response_df.to_csv("thumbs_up_data.csv")
else:
print("You downvoted this response: " + data.value)
if os.path.isfile("thumbs_down_data.csv"):
existing_thumbs_down_df = pd.read_csv("thumbs_down_data.csv")
thumbs_down_df_concat = pd.concat([existing_thumbs_down_df, response_df], ignore_index=True).drop("Unnamed: 0",axis=1, errors="ignore")
thumbs_down_df_concat.to_csv("thumbs_down_data.csv")
else:
response_df.to_csv("thumbs_down_data.csv")