File size: 17,976 Bytes
dce6100 34addbf dce6100 6ea0852 8c33828 0f18146 8652429 01c88c0 bc22fc4 7810536 641ff3e 6ea0852 641ff3e 93ac94f bc22fc4 2a4b347 641ff3e 34addbf 93ac94f 34addbf bc4bdbd 641ff3e bc22fc4 641ff3e bc22fc4 641ff3e 8652429 0f18146 2807627 01c88c0 bbf818d 8c33828 0f18146 6ea0852 bc22fc4 bc4bdbd 34addbf 8652429 bc22fc4 641ff3e 8652429 7810536 8652429 37d982e 8652429 641ff3e 8652429 7810536 8652429 6ea0852 641ff3e 01c88c0 bbf818d 641ff3e 0f18146 7810536 8c33828 8652429 bbf818d 8652429 641ff3e 8652429 7810536 01c88c0 7810536 01c88c0 7810536 8c33828 7810536 01c88c0 bbf818d 7810536 8652429 bbf818d 8c33828 bbf818d 8c33828 8652429 7810536 8652429 bc4bdbd 6ea0852 7810536 01c88c0 7810536 8652429 6ea0852 bbf818d 01c88c0 6ea0852 7810536 8652429 6ea0852 641ff3e 01c88c0 8652429 6ea0852 bbf818d 01c88c0 8652429 01c88c0 8652429 01c88c0 bbf818d 01c88c0 8652429 34addbf 641ff3e 8c33828 e1c402a 34addbf 641ff3e 8c33828 8652429 bbf818d 8c33828 34addbf bbf818d 8c33828 34addbf 8652429 34addbf 7810536 01c88c0 bc22fc4 7810536 e08f9b8 bc4bdbd bc22fc4 8652429 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import os
import socket
# By default TLDExtract will try to pull files from the internet. I have instead downloaded this file locally to avoid the requirement for an internet connection.
os.environ['TLDEXTRACT_CACHE'] = 'tld/.tld_set_snapshot'
from tools.helper_functions import ensure_output_folder_exists, add_folder_to_path, put_columns_in_df, get_connection_params, output_folder, get_or_create_env_var, reveal_feedback_buttons, wipe_logs, custom_regex_load
from tools.aws_functions import upload_file_to_s3
from tools.file_redaction import choose_and_run_redactor
from tools.file_conversion import prepare_image_or_pdf, get_input_file_names
from tools.data_anonymise import anonymise_data_files
from tools.auth import authenticate_user
#from tools.aws_functions import load_data_from_aws
import gradio as gr
import pandas as pd
from datetime import datetime
today_rev = datetime.now().strftime("%Y%m%d")
add_folder_to_path("tesseract/")
add_folder_to_path("poppler/poppler-24.02.0/Library/bin/")
ensure_output_folder_exists()
chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE"]
full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS']
language = 'en'
host_name = socket.gethostname()
feedback_logs_folder = 'feedback/' + today_rev + '/' + host_name + '/'
access_logs_folder = 'logs/' + today_rev + '/' + host_name + '/'
usage_logs_folder = 'usage/' + today_rev + '/' + host_name + '/'
# Create the gradio interface
app = gr.Blocks(theme = gr.themes.Base())
with app:
###
# STATE VARIABLES
###
prepared_pdf_state = gr.State([])
output_image_files_state = gr.State([])
output_file_list_state = gr.State([])
text_output_file_list_state = gr.State([])
log_files_output_list_state = gr.State([])
first_loop_state = gr.State(True)
second_loop_state = gr.State(False)
in_allow_list_state = gr.State(pd.DataFrame())
session_hash_state = gr.State()
s3_output_folder_state = gr.State()
# Logging state
feedback_logs_state = gr.State(feedback_logs_folder + 'log.csv')
feedback_s3_logs_loc_state = gr.State(feedback_logs_folder)
access_logs_state = gr.State(access_logs_folder + 'log.csv')
access_s3_logs_loc_state = gr.State(access_logs_folder)
usage_logs_state = gr.State(usage_logs_folder + 'log.csv')
usage_s3_logs_loc_state = gr.State(usage_logs_folder)
# Invisible elements effectively used as state variables
session_hash_textbox = gr.Textbox(value="", visible=False) # Invisible text box to hold the session hash/username, Textract request metadata, data file names just for logging purposes.
textract_metadata_textbox = gr.Textbox(value="", visible=False)
doc_file_name_textbox = gr.Textbox(value="", visible=False)
data_file_name_textbox = gr.Textbox(value="", visible=False)
s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False)
estimated_time_taken_number = gr.Number(value=0.0, precision=1, visible=False) # This keeps track of the time taken to redact files for logging purposes.
###
# UI DESIGN
###
gr.Markdown(
"""
# Document redaction
Redact personal information from documents (pdf, images), open text, or tabular data (xlsx/csv/parquet). Documents/images can be redacted using 'Quick' image analysis that works fine for typed text, but not handwriting/signatures. On the Redaction settings tab, choose 'Complex image analysis' OCR using AWS Textract (if you are using AWS) to redact these more complex elements (this service has a cost, so please only use for more complex redaction tasks). Also see the 'Redaction settings' tab to choose which pages to redact, the type of information to redact (e.g. people, places), or terms to exclude from redaction.
NOTE: In testing the app seems to find about 60% of personal information on a given (typed) page of text. It is essential that all outputs are checked **by a human** to ensure that all personal information has been removed.
This app accepts a maximum file size of 50mb. Please consider giving feedback for the quality of the answers underneath the redact buttons when the option appears, this will help to improve the app.
""")
# PDF / IMAGES TAB
with gr.Tab("PDFs/images"):
with gr.Accordion("Redact document", open = True):
in_doc_files = gr.File(label="Choose document/image files (PDF, JPG, PNG)", file_count= "multiple", file_types=['.pdf', '.jpg', '.png', '.json'])
in_redaction_method = gr.Radio(label="Choose document redaction method. Note that for AWS Textract, there will be a cost to the service from use of AWS services.", value = "Simple text analysis - PDFs with selectable text", choices=["Simple text analysis - PDFs with selectable text", "Quick image analysis - typed text", "Complex image analysis - AWS Textract, handwriting/signatures"])
gr.Markdown("""If you only want to redact certain pages, or certain entities (e.g. just email addresses), please go to the redaction settings tab.""")
document_redact_btn = gr.Button("Redact document(s)", variant="primary")
with gr.Row():
output_summary = gr.Textbox(label="Output summary")
output_file = gr.File(label="Output files")
text_documents_done = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False)
with gr.Row():
convert_text_pdf_to_img_btn = gr.Button(value="Convert pdf to image-based pdf to apply redactions", variant="secondary", visible=False)
# Feedback elements are invisible until revealed by redaction action
pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
pdf_feedback_radio = gr.Radio(choices=["The results were good", "The results were not good"], visible=False)
pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
# TEXT / TABULAR DATA TAB
with gr.Tab(label="Open text or Excel/csv files"):
gr.Markdown(
"""
### Choose open text or a tabular data file (xlsx or csv) to redact.
"""
)
with gr.Accordion("Paste open text", open = False):
in_text = gr.Textbox(label="Enter open text", lines=10)
with gr.Accordion("Upload xlsx or csv files", open = True):
in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'])
in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True)
in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).")
tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
with gr.Row():
text_output_summary = gr.Textbox(label="Output result")
text_output_file = gr.File(label="Output files")
text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False)
# Feedback elements are invisible until revealed by redaction action
data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.",
choices=["The results were good", "The results were not good"], visible=False)
data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
# SETTINGS TAB
with gr.Tab(label="Redaction settings"):
gr.Markdown(
"""
Define redaction settings that affect both document and open text redaction.
""")
with gr.Accordion("Settings for documents", open = True):
with gr.Row():
page_min = gr.Number(precision=0,minimum=0,maximum=9999, label="Lowest page to redact")
page_max = gr.Number(precision=0,minimum=0,maximum=9999, label="Highest page to redact")
with gr.Row():
handwrite_signature_checkbox = gr.CheckboxGroup(choices=["Redact all identified handwriting", "Redact all identified signatures"], value=["Redact all identified handwriting", "Redact all identified signatures"])
with gr.Accordion("Settings for open text or xlsx/csv files", open = True):
anon_strat = gr.Radio(choices=["replace with <REDACTED>", "replace with <ENTITY_NAME>", "redact", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace with <REDACTED>")
with gr.Accordion("Settings for documents and open text/xlsx/csv files", open = True):
in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Entities to redact (click close to down arrow for full list)")
with gr.Row():
in_redact_language = gr.Dropdown(value = "en", choices = ["en"], label="Redaction language (only English currently supported)", multiselect=False)
# Upload 'Allow list' for terms not to be redacted
with gr.Row():
in_allow_list = gr.UploadButton(label="Import allow list file.", file_count="multiple")
gr.Markdown("""Import allow list file - csv table with one column of a different word/phrase on each row (case sensitive). Terms in this file will not be redacted.""")
in_allow_list_text = gr.Textbox(label="Custom allow list load status")
log_files_output = gr.File(label="Log file output", interactive=False)
# If a custom allow list is uploaded
in_allow_list.upload(fn=custom_regex_load, inputs=[in_allow_list], outputs=[in_allow_list_text, in_allow_list_state])
###
# PDF/IMAGE REDACTION
###
in_doc_files.upload(fn=get_input_file_names, inputs=[in_doc_files], outputs=[doc_file_name_textbox])
document_redact_btn.click(fn = prepare_image_or_pdf, inputs=[in_doc_files, in_redaction_method, in_allow_list, text_documents_done, output_summary, first_loop_state], outputs=[output_summary, prepared_pdf_state], api_name="prepare_doc").\
then(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, in_redact_language, in_redact_entities, in_redaction_method, in_allow_list_state, text_documents_done, output_summary, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox],
outputs=[output_summary, output_file, output_file_list_state, text_documents_done, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox], api_name="redact_doc")
# If the output file count text box changes, keep going with redacting each document until done
text_documents_done.change(fn = prepare_image_or_pdf, inputs=[in_doc_files, in_redaction_method, in_allow_list, text_documents_done, output_summary, second_loop_state], outputs=[output_summary, prepared_pdf_state]).\
then(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, in_redact_language, in_redact_entities, in_redaction_method, in_allow_list_state, text_documents_done, output_summary, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox],
outputs=[output_summary, output_file, output_file_list_state, text_documents_done, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox]).\
then(fn = reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title])
###
# TABULAR DATA REDACTION
###
in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]).\
then(fn=get_input_file_names, inputs=[in_data_files], outputs=[data_file_name_textbox])
tabular_data_redact_btn.click(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state], api_name="redact_data")
# If the output file count text box changes, keep going with redacting each data file until done
text_tabular_files_done.change(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state]).\
then(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title])
###
# APP LOAD AND LOGGING
###
# Get connection details on app load
app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state, session_hash_textbox])
# Log usernames and times of access to file (to know who is using the app when running on AWS)
access_callback = gr.CSVLogger()
access_callback.setup([session_hash_textbox], access_logs_folder)
session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
# User submitted feedback for pdf redactions
pdf_callback = gr.CSVLogger()
pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, in_doc_files], feedback_logs_folder)
pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args)), [pdf_feedback_radio, pdf_further_details_text, in_doc_files], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])
# User submitted feedback for data redactions
data_callback = gr.CSVLogger()
data_callback.setup([data_feedback_radio, data_further_details_text, in_data_files], feedback_logs_folder)
data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, in_data_files], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])
# Log processing time/token usage when making a query
usage_callback = gr.CSVLogger()
usage_callback.setup([session_hash_textbox, doc_file_name_textbox, data_file_name_textbox, estimated_time_taken_number, textract_metadata_textbox], usage_logs_folder)
estimated_time_taken_number.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, doc_file_name_textbox, data_file_name_textbox, estimated_time_taken_number, textract_metadata_textbox], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
# Launch the Gradio app
COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0')
print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}')
if __name__ == "__main__":
if os.environ['COGNITO_AUTH'] == "1":
app.queue().launch(show_error=True, auth=authenticate_user, max_file_size='50mb')
else:
app.queue().launch(show_error=True, inbrowser=True, max_file_size='50mb')
# AWS options - placeholder for possibility of storing data on s3 and retrieving it in app
# with gr.Tab(label="Advanced options"):
# with gr.Accordion(label = "AWS data access", open = True):
# aws_password_box = gr.Textbox(label="Password for AWS data access (ask the Data team if you don't have this)")
# with gr.Row():
# in_aws_file = gr.Dropdown(label="Choose file to load from AWS (only valid for API Gateway app)", choices=["None", "Lambeth borough plan"])
# load_aws_data_button = gr.Button(value="Load data from AWS", variant="secondary")
# aws_log_box = gr.Textbox(label="AWS data load status")
# ### Loading AWS data ###
# load_aws_data_button.click(fn=load_data_from_aws, inputs=[in_aws_file, aws_password_box], outputs=[in_doc_files, aws_log_box]) |