File size: 9,098 Bytes
641ff3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from PIL import Image
from typing import List
import pandas as pd
from presidio_image_redactor import ImageRedactorEngine, ImageAnalyzerEngine
from pdfminer.high_level import extract_pages
from tools.file_conversion import process_file
from pdfminer.layout import LTTextContainer, LTChar, LTTextLine, LTAnno
from pikepdf import Pdf, Dictionary, Name
from gradio import Progress

from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold

def redact_image_pdf(file_path:str, language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, progress=Progress(track_tqdm=True)):
    '''

    take an path for an image of a document, then run this image through the Presidio ImageAnalyzer to get a redacted page back

    '''

    progress(0, desc="Converting pages to image")

    image_paths = process_file(file_path)

    # Create a new PDF
    #pdf = pikepdf.new()

    images = []
    number_of_pages = len(image_paths)

    progress(0.1, desc="Redacting pages")

    for i in progress.tqdm(range(0,number_of_pages), total=number_of_pages, unit="pages", desc="Redacting pages"):

        # Get the image to redact using PIL lib (pillow)
        image = image_paths[i] #Image.open(image_paths[i])

        # %%
        image_analyser = ImageAnalyzerEngine(nlp_analyser)
        engine = ImageRedactorEngine(image_analyser)


        if language == 'en':
            ocr_lang = 'eng'
        else: ocr_lang = language

        # %%
        # Redact the image with pink color
        redacted_image = engine.redact(image,
            fill=(0, 0, 0),
            ocr_kwargs={"lang": ocr_lang},
            allow_list=allow_list,
            ad_hoc_recognizers= None,
            **{
                "language": language,
                "entities": chosen_redact_entities,
                "score_threshold": score_threshold
            },
            )
        
        images.append(redacted_image)
                
        # multiple inputs (variant 2)
        # with open("name.pdf","wb") as f:
	    # f.write(img2pdf.convert(["test1.jpg", "test2.png"]))
        
        # # Create page from image
        # pdf.add_blank_page(page_size=(redacted_image.width, redacted_image.height)) 
        # page = pdf.pages[-1]
        # page.add_image(redacted_image, 0, 0)

        # %%
        # Get descriptive output of results for checks - not necessary except for debugging
        # bboxes = image_analyser.analyze(image)

        # # %%
        # check_df = pd.DataFrame(bboxes)[0].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True)

        # check_df.columns = ["type", "start", "end", "score", "left", "top", "width", "height"]

        # check_df.to_csv("check_df.csv")

    return images

def redact_text_pdf(filename:str, language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, progress=Progress()):
    '''

    Redact chosen entities from a pdf that is made up of multiple pages that are not images.

    '''
    
    combined_analyzer_results = []
    analyser_explanations = []
    annotations_all_pages = []
    analyzed_bounding_boxes_df = pd.DataFrame()

    pdf = Pdf.open(filename)

    for page_num, page in progress.tqdm(enumerate(pdf.pages), total=len(pdf.pages), unit="pages", desc="Redacting pages"):

        print("Page number is: ", page_num)

        annotations_on_page = []
        analyzed_bounding_boxes = []

        for page_layout in extract_pages(filename, page_numbers = [page_num], maxpages=1):
            analyzer_results = []

            for text_container in page_layout:
                if isinstance(text_container, LTTextContainer):
                    text_to_analyze = text_container.get_text()

                    analyzer_results = []
                    characters = []

                    analyzer_results = nlp_analyser.analyze(text=text_to_analyze,
                                                            language=language, 
                                                            entities=chosen_redact_entities,
                                                            score_threshold=score_threshold,
                                                            return_decision_process=False,
                                                            allow_list=allow_list)

                        #if analyzer_results:
                        #    pass
                        #explanation = analyzer_results[0].analysis_explanation.to_dict()
                        #analyser_explanations.append(explanation)
                    characters = [char                    # This is what we want to include in the list
                            for line in text_container          # Loop through each line in text_container
                            if isinstance(line, LTTextLine)    # Check if the line is an instance of LTTextLine
                            for char in line]                   # Loop through each character in the line
                            #if isinstance(char, LTChar)]  # Check if the character is not an instance of LTAnno #isinstance(char, LTChar) or


                    #print(characters)

                    # Collect unique types
                    # unique_types = set()

                    # for line in text_container:
                    #     if isinstance(line, LTTextLine):
                    #         print("Line: ", line)
                    #         for char in line:
                    #             unique_types.add(type(char))
                    #             if isinstance(char, LTAnno):
                    #                 print(char)

                    # # Print the unique types
                    # print("Unique types in text_container:")
                    # for t in unique_types:
                    #     print(t)
                    
                    # If any results found
                    print(analyzer_results)

                    if len(analyzer_results) > 0 and len(characters) > 0:
                        analyzed_bounding_boxes.extend({"boundingBox": char.bbox, "result": result} for result in analyzer_results for char in characters[result.start:result.end] if isinstance(char, LTChar))
                        combined_analyzer_results.extend(analyzer_results)

            if len(analyzer_results) > 0:
                # Create summary df of annotations to be made
                analyzed_bounding_boxes_df_new = pd.DataFrame(analyzed_bounding_boxes)
                analyzed_bounding_boxes_df_text = analyzed_bounding_boxes_df_new['result'].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True)
                analyzed_bounding_boxes_df_text.columns = ["type", "start", "end", "score"]
                analyzed_bounding_boxes_df_new = pd.concat([analyzed_bounding_boxes_df_new, analyzed_bounding_boxes_df_text], axis = 1)
                analyzed_bounding_boxes_df_new['page'] = page_num + 1
                analyzed_bounding_boxes_df = pd.concat([analyzed_bounding_boxes_df, analyzed_bounding_boxes_df_new], axis = 0)

            for analyzed_bounding_box in analyzed_bounding_boxes:
                bounding_box = analyzed_bounding_box["boundingBox"]
                annotation = Dictionary(
                    Type=Name.Annot,
                    Subtype=Name.Highlight,
                    QuadPoints=[bounding_box[0], bounding_box[3], bounding_box[2], bounding_box[3], bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[1]],
                    Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]],
                    C=[0, 0, 0],
                    CA=1, # Transparency
                    T=analyzed_bounding_box["result"].entity_type
                )
                annotations_on_page.append(annotation)

            annotations_all_pages.extend([annotations_on_page])
   
            print("For page number: ", page_num, " there are ", len(annotations_all_pages[page_num]), " annotations")
            page.Annots = pdf.make_indirect(annotations_on_page)

        # Extracting data from dictionaries
        # extracted_data = []
        # for item in annotations_all_pages:
        #     temp_dict = {}
        #     #print(item)
        #     for key, value in item.items():
        #         if isinstance(value, Decimal):
        #             temp_dict[key] = float(value)
        #         elif isinstance(value, list):
        #             temp_dict[key] = [float(v) if isinstance(v, Decimal) else v for v in value]
        #         else:
        #             temp_dict[key] = value
        #     extracted_data.append(temp_dict)

        # Creating DataFrame
        # annotations_out = pd.DataFrame(extracted_data)
        #print(df)

        #annotations_out.to_csv("examples/annotations.csv")
    
    analyzed_bounding_boxes_df.to_csv("output/annotations_made.csv")

    return pdf