File size: 15,566 Bytes
dce6100 34addbf dce6100 8c33828 0f18146 7810536 01c88c0 bc22fc4 7810536 641ff3e 93ac94f bc22fc4 2a4b347 641ff3e 34addbf 93ac94f 34addbf bc4bdbd 641ff3e bc22fc4 641ff3e bc22fc4 641ff3e 0f18146 2807627 01c88c0 bbf818d 8c33828 0f18146 bc22fc4 bc4bdbd 34addbf bc22fc4 641ff3e bc4bdbd 7810536 8c33828 37d982e 8c33828 641ff3e 7810536 641ff3e 01c88c0 bbf818d 641ff3e 0f18146 7810536 8c33828 bbf818d 8c33828 34addbf 641ff3e 7810536 01c88c0 7810536 01c88c0 7810536 8c33828 7810536 01c88c0 bbf818d 7810536 bbf818d 8c33828 bbf818d 8c33828 7810536 bc4bdbd 7810536 01c88c0 7810536 bbf818d 01c88c0 7810536 34addbf 7810536 641ff3e 7810536 8c33828 34addbf 641ff3e 01c88c0 8c33828 34addbf bbf818d 01c88c0 bbf818d 01c88c0 bbf818d 01c88c0 34addbf 641ff3e 8c33828 e1c402a 34addbf 641ff3e 8c33828 34addbf bbf818d 8c33828 34addbf bbf818d 8c33828 34addbf 7810536 01c88c0 bc22fc4 7810536 e08f9b8 bc4bdbd bc22fc4 bc4bdbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import socket
# By default TLDExtract will try to pull files from the internet. I have instead downloaded this file locally to avoid the requirement for an internet connection.
os.environ['TLDEXTRACT_CACHE'] = 'tld/.tld_set_snapshot'
from tools.helper_functions import ensure_output_folder_exists, add_folder_to_path, put_columns_in_df, get_connection_params, output_folder, get_or_create_env_var, reveal_feedback_buttons, wipe_logs
from tools.aws_functions import upload_file_to_s3
from tools.file_redaction import choose_and_run_redactor
from tools.file_conversion import prepare_image_or_text_pdf
from tools.data_anonymise import anonymise_data_files
from tools.auth import authenticate_user
#from tools.aws_functions import load_data_from_aws
import gradio as gr
from datetime import datetime
today_rev = datetime.now().strftime("%Y%m%d")
add_folder_to_path("tesseract/")
add_folder_to_path("poppler/poppler-24.02.0/Library/bin/")
ensure_output_folder_exists()
chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE"]
full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS']
language = 'en'
host_name = socket.gethostname()
feedback_logs_folder = 'feedback/' + today_rev + '/' + host_name + '/'
access_logs_folder = 'logs/' + today_rev + '/' + host_name + '/'
usage_logs_folder = 'usage/' + today_rev + '/' + host_name + '/'
# Create the gradio interface
app = gr.Blocks(theme = gr.themes.Base())
with app:
prepared_pdf_state = gr.State([])
output_image_files_state = gr.State([])
output_file_list_state = gr.State([])
text_output_file_list_state = gr.State([])
log_files_output_list_state = gr.State([])
first_loop_state = gr.State(True)
second_loop_state = gr.State(False)
session_hash_state = gr.State()
s3_output_folder_state = gr.State()
# Logging state
feedback_logs_state = gr.State(feedback_logs_folder + 'log.csv')
feedback_s3_logs_loc_state = gr.State(feedback_logs_folder)
access_logs_state = gr.State(access_logs_folder + 'log.csv')
access_s3_logs_loc_state = gr.State(access_logs_folder)
usage_logs_state = gr.State(usage_logs_folder + 'log.csv')
usage_s3_logs_loc_state = gr.State(usage_logs_folder)
gr.Markdown(
"""
# Document redaction
Redact personal information from documents, open text, or xlsx/csv tabular data. See the 'Redaction settings' to change various settings such as which types of information to redact (e.g. people, places), or terms to exclude from redaction. If you are getting 0 redactions, it's possible that the text in the document is saved in image format instead of as selectable text. Select 'Image analysis' on the Settings page in this case.
WARNING: In testing the app seems to only find about 60% of personal information on a given (typed) page of text. It is essential that all outputs are checked **by a human** to ensure that all personal information has been removed.
This app accepts a maximum file size of 10mb. Please consider giving feedback for the quality of the answers underneath the redact buttons when the option appears, this will help to improve the app.
""")
with gr.Tab("PDFs/images"):
with gr.Accordion("Redact document", open = True):
in_file = gr.File(label="Choose document/image files (PDF, JPG, PNG)", file_count= "multiple", file_types=['.pdf', '.jpg', '.png'])
redact_btn = gr.Button("Redact document(s)", variant="primary")
with gr.Row():
output_summary = gr.Textbox(label="Output summary")
output_file = gr.File(label="Output files")
text_documents_done = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False)
with gr.Row():
convert_text_pdf_to_img_btn = gr.Button(value="Convert pdf to image-based pdf to apply redactions", variant="secondary", visible=False)
pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
pdf_feedback_radio = gr.Radio(choices=["The results were good", "The results were not good"], visible=False)
pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
with gr.Row():
s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False)
# This keeps track of the time taken to redact files for logging purposes.
estimated_time_taken_number = gr.Number(value=0.0, precision=1, visible=False)
with gr.Tab(label="Open text or Excel/csv files"):
gr.Markdown(
"""
### Choose open text or a tabular data file (xlsx or csv) to redact.
"""
)
with gr.Accordion("Paste open text", open = False):
in_text = gr.Textbox(label="Enter open text", lines=10)
with gr.Accordion("Upload xlsx or csv files", open = True):
in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'])
in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True)
in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).")
tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
with gr.Row():
text_output_summary = gr.Textbox(label="Output result")
text_output_file = gr.File(label="Output files")
text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False)
data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.",
choices=["The results were good", "The results were not good"], visible=False)
data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
with gr.Tab(label="Redaction settings"):
gr.Markdown(
"""
Define redaction settings that affect both document and open text redaction.
""")
with gr.Accordion("Settings for documents", open = True):
in_redaction_method = gr.Radio(label="Default document redaction method - text analysis is faster is not useful for image-based PDFs. Imaged-based is slightly less accurate in general.", value = "Text analysis", choices=["Text analysis", "Image analysis"])
with gr.Row():
page_min = gr.Number(precision=0,minimum=0,maximum=9999, label="Lowest page to redact")
page_max = gr.Number(precision=0,minimum=0,maximum=9999, label="Highest page to redact")
with gr.Accordion("Settings for open text or xlsx/csv files", open = True):
anon_strat = gr.Radio(choices=["replace with <REDACTED>", "replace with <ENTITY_NAME>", "redact", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace with <REDACTED>")
with gr.Accordion("Settings for documents and open text/xlsx/csv files", open = True):
in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Entities to redact (click close to down arrow for full list)")
with gr.Row():
in_redact_language = gr.Dropdown(value = "en", choices = ["en"], label="Redaction language (only English currently supported)", multiselect=False)
in_allow_list = gr.Dataframe(label="Allow list - enter a new term to ignore for redaction on each row e.g. Lambeth -> add new row -> Lambeth 2030", headers=["Allow list"], row_count=1, col_count=(1, 'fixed'), value=[[""]], type="array", column_widths=["100px"], datatype='str')
log_files_output = gr.File(label="Log file output", interactive=False)
# Invisible text box to hold the session hash/username just for logging purposes
session_hash_textbox = gr.Textbox(value="", visible=False)
# AWS options - placeholder for possibility of storing data on s3
# with gr.Tab(label="Advanced options"):
# with gr.Accordion(label = "AWS data access", open = True):
# aws_password_box = gr.Textbox(label="Password for AWS data access (ask the Data team if you don't have this)")
# with gr.Row():
# in_aws_file = gr.Dropdown(label="Choose file to load from AWS (only valid for API Gateway app)", choices=["None", "Lambeth borough plan"])
# load_aws_data_button = gr.Button(value="Load data from AWS", variant="secondary")
# aws_log_box = gr.Textbox(label="AWS data load status")
# ### Loading AWS data ###
# load_aws_data_button.click(fn=load_data_from_aws, inputs=[in_aws_file, aws_password_box], outputs=[in_file, aws_log_box])
# Document redaction
redact_btn.click(fn = prepare_image_or_text_pdf, inputs=[in_file, in_redaction_method, in_allow_list, text_documents_done, output_summary, first_loop_state], outputs=[output_summary, prepared_pdf_state], api_name="prepare").\
then(fn = choose_and_run_redactor, inputs=[in_file, prepared_pdf_state, in_redact_language, in_redact_entities, in_redaction_method, in_allow_list, text_documents_done, output_summary, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, estimated_time_taken_number],
outputs=[output_summary, output_file, output_file_list_state, text_documents_done, log_files_output, log_files_output_list_state, estimated_time_taken_number], api_name="redact_doc")
# If the output file count text box changes, keep going with redacting each document until done
text_documents_done.change(fn = prepare_image_or_text_pdf, inputs=[in_file, in_redaction_method, in_allow_list, text_documents_done, output_summary, second_loop_state], outputs=[output_summary, prepared_pdf_state]).\
then(fn = choose_and_run_redactor, inputs=[in_file, prepared_pdf_state, in_redact_language, in_redact_entities, in_redaction_method, in_allow_list, text_documents_done, output_summary, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, estimated_time_taken_number],
outputs=[output_summary, output_file, output_file_list_state, text_documents_done, log_files_output, log_files_output_list_state, estimated_time_taken_number]).\
then(fn = reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title])
# Tabular data redaction
in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets])
tabular_data_redact_btn.click(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state], api_name="redact_text")
# If the output file count text box changes, keep going with redacting each data file until done
text_tabular_files_done.change(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state]).\
then(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title])
# Get connection details on app load
app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state, session_hash_textbox])
# Log usernames and times of access to file (to know who is using the app when running on AWS)
access_callback = gr.CSVLogger()
access_callback.setup([session_hash_textbox], access_logs_folder)
session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
# User submitted feedback for pdf redactions
pdf_callback = gr.CSVLogger()
pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, in_file], feedback_logs_folder)
pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args)), [pdf_feedback_radio, pdf_further_details_text, in_file], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])
# User submitted feedback for data redactions
data_callback = gr.CSVLogger()
data_callback.setup([data_feedback_radio, data_further_details_text, in_data_files], feedback_logs_folder)
data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, in_data_files], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])
# Log processing time/token usage when making a query
usage_callback = gr.CSVLogger()
usage_callback.setup([session_hash_textbox, in_data_files, estimated_time_taken_number], usage_logs_folder)
estimated_time_taken_number.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, in_data_files, estimated_time_taken_number], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
# Launch the Gradio app
COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0')
print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}')
if __name__ == "__main__":
if os.environ['COGNITO_AUTH'] == "1":
app.queue().launch(show_error=True, auth=authenticate_user, max_file_size='50mb')
else:
app.queue().launch(show_error=True, inbrowser=True, max_file_size='50mb') |