File size: 15,566 Bytes
dce6100
34addbf
dce6100
 
 
 
8c33828
 
0f18146
7810536
01c88c0
bc22fc4
7810536
641ff3e
 
93ac94f
 
 
bc22fc4
 
2a4b347
 
641ff3e
 
 
 
 
34addbf
93ac94f
34addbf
 
 
bc4bdbd
641ff3e
bc22fc4
641ff3e
bc22fc4
641ff3e
0f18146
 
2807627
01c88c0
bbf818d
8c33828
 
0f18146
bc22fc4
 
bc4bdbd
34addbf
 
 
 
 
 
 
bc22fc4
641ff3e
 
 
 
bc4bdbd
7810536
8c33828
37d982e
8c33828
641ff3e
 
7810536
 
 
 
 
641ff3e
 
 
01c88c0
bbf818d
641ff3e
0f18146
7810536
8c33828
bbf818d
 
 
 
8c33828
 
 
34addbf
 
641ff3e
7810536
 
 
 
 
 
 
 
01c88c0
 
 
 
7810536
01c88c0
7810536
8c33828
7810536
 
 
01c88c0
bbf818d
7810536
bbf818d
 
8c33828
bbf818d
 
8c33828
7810536
 
 
 
 
 
 
bc4bdbd
 
 
7810536
01c88c0
7810536
 
 
 
 
 
bbf818d
01c88c0
 
 
7810536
34addbf
7810536
 
 
 
 
 
 
 
641ff3e
7810536
 
 
 
8c33828
34addbf
 
641ff3e
01c88c0
8c33828
34addbf
 
bbf818d
01c88c0
 
 
 
bbf818d
01c88c0
 
bbf818d
 
01c88c0
34addbf
 
641ff3e
8c33828
e1c402a
 
 
34addbf
641ff3e
8c33828
 
34addbf
bbf818d
 
8c33828
 
 
34addbf
bbf818d
 
8c33828
34addbf
 
 
 
 
 
7810536
01c88c0
bc22fc4
 
7810536
e08f9b8
bc4bdbd
bc22fc4
bc4bdbd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import socket

# By default TLDExtract will try to pull files from the internet. I have instead downloaded this file locally to avoid the requirement for an internet connection.
os.environ['TLDEXTRACT_CACHE'] = 'tld/.tld_set_snapshot'

from tools.helper_functions import ensure_output_folder_exists, add_folder_to_path, put_columns_in_df, get_connection_params, output_folder, get_or_create_env_var, reveal_feedback_buttons, wipe_logs
from tools.aws_functions import upload_file_to_s3
from tools.file_redaction import choose_and_run_redactor
from tools.file_conversion import prepare_image_or_text_pdf
from tools.data_anonymise import anonymise_data_files
from tools.auth import authenticate_user
#from tools.aws_functions import load_data_from_aws
import gradio as gr

from datetime import datetime
today_rev = datetime.now().strftime("%Y%m%d")

add_folder_to_path("tesseract/")
add_folder_to_path("poppler/poppler-24.02.0/Library/bin/")

ensure_output_folder_exists()

chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE"] 
full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS']
language = 'en'

host_name = socket.gethostname()

feedback_logs_folder = 'feedback/' + today_rev + '/' + host_name + '/'
access_logs_folder = 'logs/' + today_rev + '/' + host_name + '/'
usage_logs_folder = 'usage/' + today_rev + '/' + host_name + '/'

# Create the gradio interface
app = gr.Blocks(theme = gr.themes.Base())

with app:

    prepared_pdf_state = gr.State([])
    output_image_files_state = gr.State([])
    output_file_list_state = gr.State([])
    text_output_file_list_state = gr.State([])
    log_files_output_list_state = gr.State([]) 
    first_loop_state = gr.State(True)
    second_loop_state = gr.State(False)

    session_hash_state = gr.State()
    s3_output_folder_state = gr.State()

    # Logging state
    feedback_logs_state = gr.State(feedback_logs_folder + 'log.csv')
    feedback_s3_logs_loc_state = gr.State(feedback_logs_folder)
    access_logs_state = gr.State(access_logs_folder + 'log.csv')
    access_s3_logs_loc_state = gr.State(access_logs_folder)
    usage_logs_state = gr.State(usage_logs_folder + 'log.csv')
    usage_s3_logs_loc_state = gr.State(usage_logs_folder)      

    gr.Markdown(
    """

    # Document redaction



    Redact personal information from documents, open text, or xlsx/csv tabular data. See the 'Redaction settings' to change various settings such as which types of information to redact (e.g. people, places), or terms to exclude from redaction. If you are getting 0 redactions, it's possible that the text in the document is saved in image format instead of as selectable text. Select 'Image analysis' on the Settings page in this case.



    WARNING: In testing the app seems to only find about 60% of personal information on a given (typed) page of text. It is essential that all outputs are checked **by a human** to ensure that all personal information has been removed.



    This app accepts a maximum file size of 10mb. Please consider giving feedback for the quality of the answers underneath the redact buttons when the option appears, this will help to improve the app.

    """)

    with gr.Tab("PDFs/images"):

        with gr.Accordion("Redact document", open = True):
            in_file = gr.File(label="Choose document/image files (PDF, JPG, PNG)", file_count= "multiple", file_types=['.pdf', '.jpg', '.png'])
            redact_btn = gr.Button("Redact document(s)", variant="primary")
        
        with gr.Row():
            output_summary = gr.Textbox(label="Output summary")
            output_file = gr.File(label="Output files")
            text_documents_done = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False)

        with gr.Row():
            convert_text_pdf_to_img_btn = gr.Button(value="Convert pdf to image-based pdf to apply redactions", variant="secondary", visible=False)

        pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
        pdf_feedback_radio = gr.Radio(choices=["The results were good", "The results were not good"], visible=False)
        pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
        pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)

        with gr.Row():
            s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False)
            # This keeps track of the time taken to redact files for logging purposes.
            estimated_time_taken_number = gr.Number(value=0.0, precision=1, visible=False)
    
    with gr.Tab(label="Open text or Excel/csv files"):
        gr.Markdown(
    """

    ### Choose open text or a tabular data file (xlsx or csv) to redact.

    """
        )    
        with gr.Accordion("Paste open text", open = False):
            in_text = gr.Textbox(label="Enter open text", lines=10)
        with gr.Accordion("Upload xlsx or csv files", open = True):
            in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'])
        
        in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True)

        in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).")
        
        tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
        
        with gr.Row():
            text_output_summary = gr.Textbox(label="Output result")
            text_output_file = gr.File(label="Output files")
            text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False)

        data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
        data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.",
                choices=["The results were good", "The results were not good"], visible=False)
        data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
        data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)

    with gr.Tab(label="Redaction settings"):
        gr.Markdown(
    """

    Define redaction settings that affect both document and open text redaction.

    """)
        with gr.Accordion("Settings for documents", open = True):
            in_redaction_method = gr.Radio(label="Default document redaction method - text analysis is faster is not useful for image-based PDFs. Imaged-based is slightly less accurate in general.", value = "Text analysis", choices=["Text analysis", "Image analysis"])
            with gr.Row():
                page_min = gr.Number(precision=0,minimum=0,maximum=9999, label="Lowest page to redact")
                page_max = gr.Number(precision=0,minimum=0,maximum=9999, label="Highest page to redact")
        with gr.Accordion("Settings for open text or xlsx/csv files", open = True):
            anon_strat = gr.Radio(choices=["replace with <REDACTED>", "replace with <ENTITY_NAME>", "redact", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace with <REDACTED>") 

        with gr.Accordion("Settings for documents and open text/xlsx/csv files", open = True):
            in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Entities to redact (click close to down arrow for full list)")
            with gr.Row():
                in_redact_language = gr.Dropdown(value = "en", choices = ["en"], label="Redaction language (only English currently supported)", multiselect=False)
                in_allow_list = gr.Dataframe(label="Allow list - enter a new term to ignore for redaction on each row e.g. Lambeth -> add new row -> Lambeth 2030", headers=["Allow list"], row_count=1, col_count=(1, 'fixed'), value=[[""]], type="array", column_widths=["100px"], datatype='str')
            log_files_output = gr.File(label="Log file output", interactive=False)

        # Invisible text box to hold the session hash/username just for logging purposes
        session_hash_textbox = gr.Textbox(value="", visible=False) 
            
    # AWS options - placeholder for possibility of storing data on s3
    # with gr.Tab(label="Advanced options"):
    #     with gr.Accordion(label = "AWS data access", open = True):
    #         aws_password_box = gr.Textbox(label="Password for AWS data access (ask the Data team if you don't have this)")
    #         with gr.Row():
    #             in_aws_file = gr.Dropdown(label="Choose file to load from AWS (only valid for API Gateway app)", choices=["None", "Lambeth borough plan"])
    #             load_aws_data_button = gr.Button(value="Load data from AWS", variant="secondary")
                
    #         aws_log_box = gr.Textbox(label="AWS data load status")
    
    # ### Loading AWS data ###
    # load_aws_data_button.click(fn=load_data_from_aws, inputs=[in_aws_file, aws_password_box], outputs=[in_file, aws_log_box])
   
    # Document redaction
    redact_btn.click(fn = prepare_image_or_text_pdf, inputs=[in_file, in_redaction_method, in_allow_list, text_documents_done, output_summary, first_loop_state], outputs=[output_summary, prepared_pdf_state], api_name="prepare").\
    then(fn = choose_and_run_redactor, inputs=[in_file, prepared_pdf_state, in_redact_language, in_redact_entities, in_redaction_method, in_allow_list, text_documents_done, output_summary, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, estimated_time_taken_number],
                    outputs=[output_summary, output_file, output_file_list_state, text_documents_done, log_files_output, log_files_output_list_state, estimated_time_taken_number], api_name="redact_doc")
    
    # If the output file count text box changes, keep going with redacting each document until done
    text_documents_done.change(fn = prepare_image_or_text_pdf, inputs=[in_file, in_redaction_method, in_allow_list, text_documents_done, output_summary, second_loop_state], outputs=[output_summary, prepared_pdf_state]).\
    then(fn = choose_and_run_redactor, inputs=[in_file, prepared_pdf_state, in_redact_language, in_redact_entities, in_redaction_method, in_allow_list, text_documents_done, output_summary, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, estimated_time_taken_number],
                    outputs=[output_summary, output_file, output_file_list_state, text_documents_done, log_files_output, log_files_output_list_state, estimated_time_taken_number]).\
    then(fn = reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title])

     # Tabular data redaction           
    in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]) 

    tabular_data_redact_btn.click(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state], api_name="redact_text")

    # If the output file count text box changes, keep going with redacting each data file until done
    text_tabular_files_done.change(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state]).\
    then(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title])    

    # Get connection details on app load
    app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state, session_hash_textbox])

    # Log usernames and times of access to file (to know who is using the app when running on AWS)
    access_callback = gr.CSVLogger()
    access_callback.setup([session_hash_textbox], access_logs_folder)
    session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\
    then(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

    # User submitted feedback for pdf redactions
    pdf_callback = gr.CSVLogger()
    pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, in_file], feedback_logs_folder)
    pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args)), [pdf_feedback_radio, pdf_further_details_text, in_file], None, preprocess=False).\
    then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])

    # User submitted feedback for data redactions
    data_callback = gr.CSVLogger()
    data_callback.setup([data_feedback_radio, data_further_details_text, in_data_files], feedback_logs_folder)
    data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, in_data_files], None, preprocess=False).\
    then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])

    # Log processing time/token usage when making a query
    usage_callback = gr.CSVLogger()
    usage_callback.setup([session_hash_textbox, in_data_files, estimated_time_taken_number], usage_logs_folder)
    estimated_time_taken_number.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, in_data_files, estimated_time_taken_number], None, preprocess=False).\
    then(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

# Launch the Gradio app
COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0')
print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}')

if __name__ == "__main__":
    if os.environ['COGNITO_AUTH'] == "1":
        app.queue().launch(show_error=True, auth=authenticate_user, max_file_size='50mb')
    else:
        app.queue().launch(show_error=True, inbrowser=True, max_file_size='50mb')