File size: 35,583 Bytes
dce6100
34addbf
dce6100
 
 
 
8235bbb
 
 
ebf9010
 
e2aae24
390bef2
0f18146
8652429
e2aae24
01c88c0
bc22fc4
ec98119
641ff3e
8235bbb
93ac94f
 
bc22fc4
 
2a4b347
 
641ff3e
f0f9378
 
 
 
ec98119
 
 
 
f0f9378
 
641ff3e
f0f9378
641ff3e
 
34addbf
 
 
 
bc4bdbd
f0f9378
 
 
056204b
f0f9378
 
 
 
641ff3e
bc22fc4
641ff3e
bc22fc4
641ff3e
8652429
 
 
eea5c07
 
 
 
 
 
6ea0852
 
bc22fc4
 
bc4bdbd
eea5c07
 
 
 
ebf9010
eea5c07
 
 
 
8235bbb
 
34addbf
8235bbb
 
 
34addbf
8235bbb
34addbf
8235bbb
8652429
8235bbb
 
 
 
 
 
e2aae24
 
8235bbb
 
 
 
 
8652429
 
ebf9010
390bef2
 
 
 
 
 
 
 
8652429
ec98119
 
 
 
 
e2aae24
 
 
ec98119
8652429
 
 
bc22fc4
641ff3e
8235bbb
641ff3e
8235bbb
 
04d80a1
7810536
04d80a1
641ff3e
8652429
7810536
 
eea5c07
e2aae24
 
 
 
 
 
f0f9378
8652429
6ea0852
eea5c07
 
641ff3e
 
390bef2
 
eea5c07
641ff3e
0f18146
7810536
8c33828
8652429
bbf818d
8235bbb
bbf818d
 
8652429
ebf9010
 
 
 
eea5c07
 
 
 
ec98119
 
 
e2aae24
 
ebf9010
 
 
 
 
 
 
5b4b5fb
ebf9010
 
5b4b5fb
ebf9010
 
 
 
eea5c07
 
 
 
 
 
e2aae24
 
ebf9010
8652429
7810536
 
 
 
 
 
 
 
01c88c0
 
 
 
7810536
01c88c0
7810536
8c33828
7810536
 
 
01c88c0
bbf818d
7810536
8652429
bbf818d
 
eea5c07
bbf818d
 
8c33828
e2aae24
 
8652429
7810536
 
 
 
 
 
8652429
bc4bdbd
 
 
f0f9378
 
7810536
 
390bef2
 
6ea0852
 
f0f9378
390bef2
 
ec98119
 
f0f9378
 
 
 
 
 
 
 
 
 
01c88c0
6ea0852
390bef2
eea5c07
8652429
 
 
e2aae24
8652429
ec98119
e2aae24
8235bbb
ec98119
 
641ff3e
eea5c07
8235bbb
ec98119
e2aae24
ebf9010
eea5c07
e2aae24
eea5c07
 
 
 
 
 
 
 
ebf9010
eea5c07
 
 
e2aae24
eea5c07
 
e2aae24
eea5c07
e2aae24
ec98119
 
 
face41c
 
ec98119
face41c
 
e2aae24
 
 
 
ebf9010
 
e2aae24
01c88c0
eea5c07
 
 
e2aae24
eea5c07
 
e2aae24
eea5c07
e2aae24
 
 
 
 
 
eea5c07
8652429
 
 
 
 
01c88c0
8652429
01c88c0
 
bbf818d
542c252
01c88c0
8652429
 
 
 
34addbf
 
641ff3e
390bef2
 
 
 
 
 
 
 
 
8c33828
8235bbb
e1c402a
 
34addbf
641ff3e
8c33828
8235bbb
e2aae24
 
bbf818d
8c33828
 
8235bbb
 
 
bbf818d
8c33828
34addbf
8235bbb
e2aae24
 
34addbf
 
7810536
01c88c0
bc22fc4
 
7810536
e08f9b8
f0f9378
bc22fc4
f0f9378
8652429
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import os
import socket

# By default TLDExtract will try to pull files from the internet. I have instead downloaded this file locally to avoid the requirement for an internet connection.
os.environ['TLDEXTRACT_CACHE'] = 'tld/.tld_set_snapshot'

import gradio as gr
import pandas as pd
from datetime import datetime
from gradio_image_annotation import image_annotator

from tools.helper_functions import ensure_output_folder_exists, add_folder_to_path, put_columns_in_df, get_connection_params, output_folder, get_or_create_env_var, reveal_feedback_buttons, custom_regex_load, reset_state_vars, load_in_default_allow_list, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector
from tools.aws_functions import upload_file_to_s3, download_file_from_s3, RUN_AWS_FUNCTIONS, bucket_name
from tools.file_redaction import choose_and_run_redactor
from tools.file_conversion import prepare_image_or_pdf, get_input_file_names
from tools.redaction_review import apply_redactions, modify_existing_page_redactions, decrease_page, increase_page, update_annotator, update_zoom
from tools.data_anonymise import anonymise_data_files
from tools.auth import authenticate_user
from tools.load_spacy_model_custom_recognisers import custom_entities


today_rev = datetime.now().strftime("%Y%m%d")

add_folder_to_path("tesseract/")
add_folder_to_path("poppler/poppler-24.02.0/Library/bin/")

ensure_output_folder_exists()

chosen_comprehend_entities = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE', 'PASSPORT_NUMBER','DRIVER_ID', 'USERNAME','PASSWORD', 'IP_ADDRESS','MAC_ADDRESS', 'LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER', 'INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER']

full_comprehend_entity_list = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE','SSN','DATE_TIME','PASSPORT_NUMBER','DRIVER_ID','URL','AGE','USERNAME','PASSWORD','AWS_ACCESS_KEY','AWS_SECRET_KEY','IP_ADDRESS','MAC_ADDRESS','ALL','LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER','CA_SOCIAL_INSURANCE_NUMBER','US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER','UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER','IN_PERMANENT_ACCOUNT_NUMBER','IN_NREGA','INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER','CA_HEALTH_NUMBER','IN_AADHAAR','IN_VOTER_NUMBER']

# Add custom spacy recognisers to the Comprehend list, so that local Spacy model can be used to pick up e.g. titles, streetnames, UK postcodes that are sometimes missed by comprehend
chosen_comprehend_entities.extend(custom_entities)
full_comprehend_entity_list.extend(custom_entities)

chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE"]

full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS']

language = 'en'

host_name = socket.gethostname()
feedback_logs_folder = 'feedback/' + today_rev + '/' + host_name + '/'
access_logs_folder = 'logs/' + today_rev + '/' + host_name + '/'
usage_logs_folder = 'usage/' + today_rev + '/' + host_name + '/'


if RUN_AWS_FUNCTIONS == "1":
    default_ocr_val = textract_option
    default_pii_detector = local_pii_detector
else:
    default_ocr_val = text_ocr_option
    default_pii_detector = local_pii_detector

# Create the gradio interface
app = gr.Blocks(theme = gr.themes.Base())

with app:

    ###
    # STATE VARIABLES
    ###

    pdf_doc_state = gr.State([])    
    all_image_annotations_state = gr.State([])
    all_line_level_ocr_results_df_state = gr.State(pd.DataFrame())
    all_decision_process_table_state = gr.State(pd.DataFrame())

    in_allow_list_state = gr.State(pd.DataFrame())

    session_hash_state = gr.State()
    s3_output_folder_state = gr.State()

    first_loop_state = gr.State(True)
    second_loop_state = gr.State(False)

    prepared_pdf_state = gr.State([])
    images_pdf_state = gr.State([]) # List of pdf pages converted to PIL images
    
    output_image_files_state = gr.State([])
    output_file_list_state = gr.State([])
    text_output_file_list_state = gr.State([])
    log_files_output_list_state = gr.State([])
    
    # Logging state
    log_file_name = 'log.csv'

    feedback_logs_state = gr.State(feedback_logs_folder + log_file_name)
    feedback_s3_logs_loc_state = gr.State(feedback_logs_folder)
    access_logs_state = gr.State(access_logs_folder + log_file_name)
    access_s3_logs_loc_state = gr.State(access_logs_folder)
    usage_logs_state = gr.State(usage_logs_folder + log_file_name)
    usage_s3_logs_loc_state = gr.State(usage_logs_folder)    
    
    # Invisible text boxes to hold the session hash/username, Textract request metadata, data file names just for logging purposes.
    session_hash_textbox = gr.Textbox(label= "session_hash_textbox", value="", visible=False)
    textract_metadata_textbox = gr.Textbox(label = "textract_metadata_textbox", value="", visible=False)
    comprehend_query_number = gr.Number(label = "comprehend_query_number", value=0, visible=False)

    doc_full_file_name_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
    doc_file_name_no_extension_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
    doc_file_name_with_extension_textbox = gr.Textbox(label = "doc_file_name_with_extension_textbox", value="", visible=False)
    data_file_name_textbox = gr.Textbox(label = "data_file_name_textbox", value="", visible=False)
    
    estimated_time_taken_number = gr.Number(label = "estimated_time_taken_number", value=0.0, precision=1, visible=False) # This keeps track of the time taken to redact files for logging purposes.
    annotate_previous_page = gr.Number(value=0, label="Previous page", precision=0, visible=False) # Keeps track of the last page that the annotator was on

    s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False)

    ## S3 default bucket and allow list file state
    default_allow_list_file_name = "default_allow_list.csv"
    default_allow_list_loc = output_folder + "/" + default_allow_list_file_name

    s3_default_bucket = gr.Textbox(label = "Default S3 bucket", value=bucket_name, visible=False)
    s3_default_allow_list_file = gr.Textbox(label = "Default allow list file", value=default_allow_list_file_name, visible=False)
    default_allow_list_output_folder_location = gr.Textbox(label = "Output default allow list location", value=default_allow_list_loc, visible=False)


    ## Annotator zoom value
    annotator_zoom_number = gr.Number(label = "Current annotator zoom level", value=100, precision=0, visible=False)
    zoom_true_bool = gr.State(True)
    zoom_false_bool = gr.State(False)

    clear_all_page_redactions = gr.State(True)
    prepare_for_review_bool = gr.Checkbox(value=True, visible=False)


    ###
    # UI DESIGN
    ###

    gr.Markdown(
    """# Document redaction



    Redact personally identifiable information (PII) from documents (pdf, images), open text, or tabular data (xlsx/csv/parquet). Documents/images can be redacted using 'Quick' image analysis that works fine for typed text, but not handwriting/signatures. On the Redaction settings tab, choose 'Complex image analysis' OCR using AWS Textract (if you are using AWS) to redact these more complex elements (this service has a cost). Addtionally you can choose the method for PII identification. 'Local' gives quick, lower quality results, AWS Comprehend gives better results but has a cost.

    

    Review suggested redactions on the 'Review redactions' tab using a point and click visual interface. See the 'Redaction settings' tab to choose which pages to redact, the type of information to redact (e.g. people, places), or terms to exclude from redaction. Please see the [User Guide](https://github.com/seanpedrick-case/doc_redaction/blob/main/README.md) for a walkthrough on how to use this and all other features in the app. The app accepts a maximum file size of 100mb. Please consider giving feedback for the quality of the answers underneath the redact buttons when the option appears, this will help to improve the app in future.



    NOTE: In testing the app seems to find about 60% of personal information on a given (typed) page of text. It is essential that all outputs are checked **by a human** to ensure that all personal information has been removed.""")

    # PDF / IMAGES TAB
    with gr.Tab("PDFs/images"):
        with gr.Accordion("Redact document", open = True):
            in_doc_files = gr.File(label="Choose a document or image file (PDF, JPG, PNG)", file_count= "single", file_types=['.pdf', '.jpg', '.png', '.json'])
            if RUN_AWS_FUNCTIONS == "1":
                in_redaction_method = gr.Radio(label="Choose text extraction method. AWS Textract has a cost per page.", value = default_ocr_val, choices=[text_ocr_option, tesseract_ocr_option, textract_option])
                pii_identification_method_drop = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost per 100 characters.", value = default_pii_detector, choices=[local_pii_detector, aws_pii_detector])
            else:
                in_redaction_method = gr.Radio(label="Choose text extraction method.", value = default_ocr_val, choices=[text_ocr_option, tesseract_ocr_option])
                pii_identification_method_drop = gr.Radio(label = "Choose PII detection method.", value = default_pii_detector, choices=[local_pii_detector], visible=False)

            gr.Markdown("""If you only want to redact certain pages, or certain entities (e.g. just email addresses), please go to the redaction settings tab.""")
            document_redact_btn = gr.Button("Redact document(s)", variant="primary")
            current_loop_page_number = gr.Number(value=0,precision=0, interactive=False, label = "Last redacted page in document", visible=False)
            page_break_return = gr.Checkbox(value = False, label="Page break reached", visible=False)
        
        with gr.Row():
            output_summary = gr.Textbox(label="Output summary", scale=1)
            output_file = gr.File(label="Output files", scale = 2)
            latest_file_completed_text = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False)

        with gr.Row():
            convert_text_pdf_to_img_btn = gr.Button(value="Convert pdf to image-based pdf to apply redactions", variant="secondary", visible=False)

        # Feedback elements are invisible until revealed by redaction action
        pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
        pdf_feedback_radio = gr.Radio(label = "Quality of results", choices=["The results were good", "The results were not good"], visible=False)
        pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
        pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
        
    # Object annotation
    with gr.Tab("Review redactions", id="tab_object_annotation"):

        with gr.Row():
            annotation_last_page_button = gr.Button("Previous page", scale = 3)
            annotate_current_page = gr.Number(value=1, label="Page (press enter to change)", precision=0, scale = 2)
            annotate_max_pages = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 1)
            annotation_next_page_button = gr.Button("Next page", scale = 3)
        with gr.Row():
            annotate_zoom_in = gr.Button("Zoom in")
            annotate_zoom_out = gr.Button("Zoom out")
        with gr.Row():
            clear_all_redactions_on_page_btn = gr.Button("Clear all redactions on page")

        annotation_button_apply = gr.Button("Apply revised redactions", variant="primary")

        annotator = image_annotator(
            label="Modify redaction boxes",
            label_list=["Redaction"],
            label_colors=[(0, 0, 0)],
            show_label=False,
            sources=None,#["upload"],
            show_clear_button=False,
            show_share_button=False,
            show_remove_button=False,
            interactive=False
        )

        with gr.Row():
            annotation_last_page_button_bottom = gr.Button("Previous page", scale = 3)
            annotate_current_page_bottom = gr.Number(value=1, label="Page (press enter to change)", precision=0, interactive=True, scale = 2)
            annotate_max_pages_bottom = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 1)
            annotation_next_page_button_bottom = gr.Button("Next page", scale = 3)

        output_review_files = gr.File(label="Review output files", file_count='multiple')
        upload_previous_review_file_btn = gr.Button("Review previously created redaction file (upload original PDF and ...redactions.json)")

    # TEXT / TABULAR DATA TAB
    with gr.Tab(label="Open text or Excel/csv files"):
        gr.Markdown(
    """

    ### Choose open text or a tabular data file (xlsx or csv) to redact.

    """
        )    
        with gr.Accordion("Paste open text", open = False):
            in_text = gr.Textbox(label="Enter open text", lines=10)
        with gr.Accordion("Upload xlsx or csv files", open = True):
            in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'])
        
        in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True)

        in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).")
        
        tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
        
        with gr.Row():
            text_output_summary = gr.Textbox(label="Output result")
            text_output_file = gr.File(label="Output files")
            text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False)

        # Feedback elements are invisible until revealed by redaction action
        data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
        data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.",
                choices=["The results were good", "The results were not good"], visible=False, show_label=True)
        data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
        data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)



    # SETTINGS TAB
    with gr.Tab(label="Redaction settings"):
        gr.Markdown(
    """

    Define redaction settings that affect both document and open text redaction.

    """)
        with gr.Accordion("Settings for documents", open = True):
            
            with gr.Row():
                page_min = gr.Number(precision=0,minimum=0,maximum=9999, label="Lowest page to redact")
                page_max = gr.Number(precision=0,minimum=0,maximum=9999, label="Highest page to redact")
            
            
        with gr.Accordion("Settings for documents and open text/xlsx/csv files", open = True):
            with gr.Row():
                in_allow_list = gr.File(label="Import allow list file", file_count="multiple")
                with gr.Column():   
                    gr.Markdown("""Import allow list file - csv table with one column of a different word/phrase on each row (case sensitive). Terms in this file will not be redacted.""")
                    in_allow_list_text = gr.Textbox(label="Custom allow list load status")

            with gr.Accordion("Add or remove entity types to redact", open = False):
                in_redact_comprehend_entities = gr.Dropdown(value=chosen_comprehend_entities, choices=full_comprehend_entity_list, multiselect=True, label="Entities to redact - AWS Comprehend PII identification model (click close to down arrow for full list)")

                in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Entities to redact - local PII identification model (click close to down arrow for full list)")
            
            handwrite_signature_checkbox = gr.CheckboxGroup(label="AWS Textract settings", choices=["Redact all identified handwriting", "Redact all identified signatures"], value=["Redact all identified handwriting", "Redact all identified signatures"])
            #with gr.Row():
            in_redact_language = gr.Dropdown(value = "en", choices = ["en"], label="Redaction language (only English currently supported)", multiselect=False, visible=False)
                

        with gr.Accordion("Settings for open text or xlsx/csv files", open = True):
            anon_strat = gr.Radio(choices=["replace with <REDACTED>", "replace with <ENTITY_NAME>", "redact", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace with <REDACTED>")
            
        log_files_output = gr.File(label="Log file output", interactive=False)

    # If a custom allow list is uploaded
    in_allow_list.change(fn=custom_regex_load, inputs=[in_allow_list], outputs=[in_allow_list_text, in_allow_list_state])

    ###
    # PDF/IMAGE REDACTION
    ###
    in_doc_files.upload(fn=get_input_file_names, inputs=[in_doc_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox])

    document_redact_btn.click(fn = reset_state_vars, outputs=[pdf_doc_state, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number, textract_metadata_textbox, annotator]).\
    then(fn = prepare_image_or_pdf, inputs=[in_doc_files, in_redaction_method, in_allow_list, latest_file_completed_text, output_summary, first_loop_state, annotate_max_pages, current_loop_page_number, all_image_annotations_state], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state], api_name="prepare_doc").\
    then(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, in_redaction_method, in_allow_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number],
                    outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number], api_name="redact_doc").\
                    then(fn=update_annotator, inputs=[all_image_annotations_state, page_min, annotator_zoom_number], outputs=[annotator, annotate_current_page, annotate_current_page_bottom])
    
    # If the app has completed a batch of pages, it will run this until the end of all pages in the document
    current_loop_page_number.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, in_redaction_method, in_allow_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number],
                    outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number]).\
                    then(fn=update_annotator, inputs=[all_image_annotations_state, page_min, annotator_zoom_number], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
    
    # If a file has been completed, the function will continue onto the next document
    latest_file_completed_text.change(fn=update_annotator, inputs=[all_image_annotations_state, page_min, annotator_zoom_number], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page]).\
                    then(fn=reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title])
        # latest_file_completed_text.change(fn = prepare_image_or_pdf, inputs=[in_doc_files, in_redaction_method, in_allow_list, latest_file_completed_text, output_summary, second_loop_state, annotate_max_pages, current_loop_page_number], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state]).\
    # then(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redaction_method, in_allow_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return],
                    # outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state]).\
                    #then(fn=update_annotator, inputs=[all_image_annotations_state, page_min], outputs=[annotator, annotate_current_page]).\
                    #then(fn=reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title])
    
    ### REVIEW REDACTIONS

    # Page controls at top
    annotate_current_page.submit(
        modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
    
    annotation_last_page_button.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom]).\
        then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
    annotation_next_page_button.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
        then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
    
    # Zoom in and out on annotator
    annotate_zoom_in.click(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        then(update_zoom, inputs=[annotator_zoom_number, annotate_current_page, zoom_true_bool], outputs=[annotator_zoom_number, annotate_current_page])
        
    annotate_zoom_out.click(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        then(update_zoom, inputs=[annotator_zoom_number, annotate_current_page, zoom_false_bool], outputs=[annotator_zoom_number, annotate_current_page])
    
    annotator_zoom_number.change(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])

    clear_all_redactions_on_page_btn.click(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, clear_all_page_redactions], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])

    #annotation_button_get.click(get_boxes_json, annotator, json_boxes)
    annotation_button_apply.click(apply_redactions, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files], scroll_to_output=True)

    # Page controls at bottom
    annotate_current_page_bottom.submit(
        modify_existing_page_redactions, inputs = [annotator, annotate_current_page_bottom, annotate_previous_page, all_image_annotations_state], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page]).\
        then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])

    annotation_last_page_button_bottom.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom]).\
        then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
    annotation_next_page_button_bottom.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
        then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
    
    # Upload previous files for modifying redactions
    upload_previous_review_file_btn.click(fn=get_input_file_names, inputs=[output_review_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox]).\
        then(fn = prepare_image_or_pdf, inputs=[output_review_files, in_redaction_method, in_allow_list, latest_file_completed_text, output_summary, second_loop_state, annotate_max_pages, current_loop_page_number, all_image_annotations_state, prepare_for_review_bool], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state]).\
        then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])

    ###
    # TABULAR DATA REDACTION
    ###            
    in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]).\
                  then(fn=get_input_file_names, inputs=[in_data_files], outputs=[data_file_name_textbox])

    tabular_data_redact_btn.click(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state], api_name="redact_data")

    # If the output file count text box changes, keep going with redacting each data file until done
    text_tabular_files_done.change(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state]).\
    then(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title])

    ###
    # APP LOAD AND LOGGING
    ###

    # Get connection details on app load
    app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state, session_hash_textbox])

    # If running on AWS, load in the default allow list file from S3
    if RUN_AWS_FUNCTIONS == "1":
        print("default_allow_list_output_folder_location:", default_allow_list_output_folder_location)
        if not os.path.exists(default_allow_list_loc):
            app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_allow_list_file, default_allow_list_output_folder_location]).\
            then(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
        else:
            app.load(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])

    # Log usernames and times of access to file (to know who is using the app when running on AWS)
    access_callback = gr.CSVLogger(dataset_file_name=log_file_name)
    access_callback.setup([session_hash_textbox], access_logs_folder)
    session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\
    then(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

    # User submitted feedback for pdf redactions
    pdf_callback = gr.CSVLogger(dataset_file_name=log_file_name)
    pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], feedback_logs_folder)
    pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args)), [pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], None, preprocess=False).\
    then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])

    # User submitted feedback for data redactions
    data_callback = gr.CSVLogger(dataset_file_name=log_file_name)
    data_callback.setup([data_feedback_radio, data_further_details_text, data_file_name_textbox], feedback_logs_folder)
    data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, data_file_name_textbox], None, preprocess=False).\
    then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])

    # Log processing time/token usage when making a query
    usage_callback = gr.CSVLogger(dataset_file_name=log_file_name)
    usage_callback.setup([session_hash_textbox, doc_file_name_no_extension_textbox, data_file_name_textbox, estimated_time_taken_number, textract_metadata_textbox, pii_identification_method_drop, comprehend_query_number], usage_logs_folder)
    latest_file_completed_text.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, doc_file_name_no_extension_textbox, data_file_name_textbox, estimated_time_taken_number, textract_metadata_textbox, pii_identification_method_drop, comprehend_query_number], None, preprocess=False).\
    then(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

# Launch the Gradio app
COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0')
print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}')

if __name__ == "__main__":
    if os.environ['COGNITO_AUTH'] == "1":
        app.queue(max_size=5).launch(show_error=True, auth=authenticate_user, max_file_size='100mb')
    else:
        app.queue(max_size=5).launch(show_error=True, inbrowser=True, max_file_size='100mb')


# AWS options - placeholder for possibility of storing data on s3 and retrieving it in app
# with gr.Tab(label="Advanced options"):
#     with gr.Accordion(label = "AWS data access", open = True):
#         aws_password_box = gr.Textbox(label="Password for AWS data access (ask the Data team if you don't have this)")
#         with gr.Row():
#             in_aws_file = gr.Dropdown(label="Choose file to load from AWS (only valid for API Gateway app)", choices=["None", "Lambeth borough plan"])
#             load_aws_data_button = gr.Button(value="Load data from AWS", variant="secondary")
            
#         aws_log_box = gr.Textbox(label="AWS data load status")

# ### Loading AWS data ###
# load_aws_data_button.click(fn=load_data_from_aws, inputs=[in_aws_file, aws_password_box], outputs=[in_doc_files, aws_log_box])