Spaces:
Sleeping
Sleeping
File size: 35,583 Bytes
dce6100 34addbf dce6100 8235bbb ebf9010 e2aae24 390bef2 0f18146 8652429 e2aae24 01c88c0 bc22fc4 ec98119 641ff3e 8235bbb 93ac94f bc22fc4 2a4b347 641ff3e f0f9378 ec98119 f0f9378 641ff3e f0f9378 641ff3e 34addbf bc4bdbd f0f9378 056204b f0f9378 641ff3e bc22fc4 641ff3e bc22fc4 641ff3e 8652429 eea5c07 6ea0852 bc22fc4 bc4bdbd eea5c07 ebf9010 eea5c07 8235bbb 34addbf 8235bbb 34addbf 8235bbb 34addbf 8235bbb 8652429 8235bbb e2aae24 8235bbb 8652429 ebf9010 390bef2 8652429 ec98119 e2aae24 ec98119 8652429 bc22fc4 641ff3e 8235bbb 641ff3e 8235bbb 04d80a1 7810536 04d80a1 641ff3e 8652429 7810536 eea5c07 e2aae24 f0f9378 8652429 6ea0852 eea5c07 641ff3e 390bef2 eea5c07 641ff3e 0f18146 7810536 8c33828 8652429 bbf818d 8235bbb bbf818d 8652429 ebf9010 eea5c07 ec98119 e2aae24 ebf9010 5b4b5fb ebf9010 5b4b5fb ebf9010 eea5c07 e2aae24 ebf9010 8652429 7810536 01c88c0 7810536 01c88c0 7810536 8c33828 7810536 01c88c0 bbf818d 7810536 8652429 bbf818d eea5c07 bbf818d 8c33828 e2aae24 8652429 7810536 8652429 bc4bdbd f0f9378 7810536 390bef2 6ea0852 f0f9378 390bef2 ec98119 f0f9378 01c88c0 6ea0852 390bef2 eea5c07 8652429 e2aae24 8652429 ec98119 e2aae24 8235bbb ec98119 641ff3e eea5c07 8235bbb ec98119 e2aae24 ebf9010 eea5c07 e2aae24 eea5c07 ebf9010 eea5c07 e2aae24 eea5c07 e2aae24 eea5c07 e2aae24 ec98119 face41c ec98119 face41c e2aae24 ebf9010 e2aae24 01c88c0 eea5c07 e2aae24 eea5c07 e2aae24 eea5c07 e2aae24 eea5c07 8652429 01c88c0 8652429 01c88c0 bbf818d 542c252 01c88c0 8652429 34addbf 641ff3e 390bef2 8c33828 8235bbb e1c402a 34addbf 641ff3e 8c33828 8235bbb e2aae24 bbf818d 8c33828 8235bbb bbf818d 8c33828 34addbf 8235bbb e2aae24 34addbf 7810536 01c88c0 bc22fc4 7810536 e08f9b8 f0f9378 bc22fc4 f0f9378 8652429 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import os
import socket
# By default TLDExtract will try to pull files from the internet. I have instead downloaded this file locally to avoid the requirement for an internet connection.
os.environ['TLDEXTRACT_CACHE'] = 'tld/.tld_set_snapshot'
import gradio as gr
import pandas as pd
from datetime import datetime
from gradio_image_annotation import image_annotator
from tools.helper_functions import ensure_output_folder_exists, add_folder_to_path, put_columns_in_df, get_connection_params, output_folder, get_or_create_env_var, reveal_feedback_buttons, custom_regex_load, reset_state_vars, load_in_default_allow_list, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector
from tools.aws_functions import upload_file_to_s3, download_file_from_s3, RUN_AWS_FUNCTIONS, bucket_name
from tools.file_redaction import choose_and_run_redactor
from tools.file_conversion import prepare_image_or_pdf, get_input_file_names
from tools.redaction_review import apply_redactions, modify_existing_page_redactions, decrease_page, increase_page, update_annotator, update_zoom
from tools.data_anonymise import anonymise_data_files
from tools.auth import authenticate_user
from tools.load_spacy_model_custom_recognisers import custom_entities
today_rev = datetime.now().strftime("%Y%m%d")
add_folder_to_path("tesseract/")
add_folder_to_path("poppler/poppler-24.02.0/Library/bin/")
ensure_output_folder_exists()
chosen_comprehend_entities = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE', 'PASSPORT_NUMBER','DRIVER_ID', 'USERNAME','PASSWORD', 'IP_ADDRESS','MAC_ADDRESS', 'LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER', 'INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER']
full_comprehend_entity_list = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE','SSN','DATE_TIME','PASSPORT_NUMBER','DRIVER_ID','URL','AGE','USERNAME','PASSWORD','AWS_ACCESS_KEY','AWS_SECRET_KEY','IP_ADDRESS','MAC_ADDRESS','ALL','LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER','CA_SOCIAL_INSURANCE_NUMBER','US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER','UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER','IN_PERMANENT_ACCOUNT_NUMBER','IN_NREGA','INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER','CA_HEALTH_NUMBER','IN_AADHAAR','IN_VOTER_NUMBER']
# Add custom spacy recognisers to the Comprehend list, so that local Spacy model can be used to pick up e.g. titles, streetnames, UK postcodes that are sometimes missed by comprehend
chosen_comprehend_entities.extend(custom_entities)
full_comprehend_entity_list.extend(custom_entities)
chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE"]
full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS']
language = 'en'
host_name = socket.gethostname()
feedback_logs_folder = 'feedback/' + today_rev + '/' + host_name + '/'
access_logs_folder = 'logs/' + today_rev + '/' + host_name + '/'
usage_logs_folder = 'usage/' + today_rev + '/' + host_name + '/'
if RUN_AWS_FUNCTIONS == "1":
default_ocr_val = textract_option
default_pii_detector = local_pii_detector
else:
default_ocr_val = text_ocr_option
default_pii_detector = local_pii_detector
# Create the gradio interface
app = gr.Blocks(theme = gr.themes.Base())
with app:
###
# STATE VARIABLES
###
pdf_doc_state = gr.State([])
all_image_annotations_state = gr.State([])
all_line_level_ocr_results_df_state = gr.State(pd.DataFrame())
all_decision_process_table_state = gr.State(pd.DataFrame())
in_allow_list_state = gr.State(pd.DataFrame())
session_hash_state = gr.State()
s3_output_folder_state = gr.State()
first_loop_state = gr.State(True)
second_loop_state = gr.State(False)
prepared_pdf_state = gr.State([])
images_pdf_state = gr.State([]) # List of pdf pages converted to PIL images
output_image_files_state = gr.State([])
output_file_list_state = gr.State([])
text_output_file_list_state = gr.State([])
log_files_output_list_state = gr.State([])
# Logging state
log_file_name = 'log.csv'
feedback_logs_state = gr.State(feedback_logs_folder + log_file_name)
feedback_s3_logs_loc_state = gr.State(feedback_logs_folder)
access_logs_state = gr.State(access_logs_folder + log_file_name)
access_s3_logs_loc_state = gr.State(access_logs_folder)
usage_logs_state = gr.State(usage_logs_folder + log_file_name)
usage_s3_logs_loc_state = gr.State(usage_logs_folder)
# Invisible text boxes to hold the session hash/username, Textract request metadata, data file names just for logging purposes.
session_hash_textbox = gr.Textbox(label= "session_hash_textbox", value="", visible=False)
textract_metadata_textbox = gr.Textbox(label = "textract_metadata_textbox", value="", visible=False)
comprehend_query_number = gr.Number(label = "comprehend_query_number", value=0, visible=False)
doc_full_file_name_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
doc_file_name_no_extension_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
doc_file_name_with_extension_textbox = gr.Textbox(label = "doc_file_name_with_extension_textbox", value="", visible=False)
data_file_name_textbox = gr.Textbox(label = "data_file_name_textbox", value="", visible=False)
estimated_time_taken_number = gr.Number(label = "estimated_time_taken_number", value=0.0, precision=1, visible=False) # This keeps track of the time taken to redact files for logging purposes.
annotate_previous_page = gr.Number(value=0, label="Previous page", precision=0, visible=False) # Keeps track of the last page that the annotator was on
s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False)
## S3 default bucket and allow list file state
default_allow_list_file_name = "default_allow_list.csv"
default_allow_list_loc = output_folder + "/" + default_allow_list_file_name
s3_default_bucket = gr.Textbox(label = "Default S3 bucket", value=bucket_name, visible=False)
s3_default_allow_list_file = gr.Textbox(label = "Default allow list file", value=default_allow_list_file_name, visible=False)
default_allow_list_output_folder_location = gr.Textbox(label = "Output default allow list location", value=default_allow_list_loc, visible=False)
## Annotator zoom value
annotator_zoom_number = gr.Number(label = "Current annotator zoom level", value=100, precision=0, visible=False)
zoom_true_bool = gr.State(True)
zoom_false_bool = gr.State(False)
clear_all_page_redactions = gr.State(True)
prepare_for_review_bool = gr.Checkbox(value=True, visible=False)
###
# UI DESIGN
###
gr.Markdown(
"""# Document redaction
Redact personally identifiable information (PII) from documents (pdf, images), open text, or tabular data (xlsx/csv/parquet). Documents/images can be redacted using 'Quick' image analysis that works fine for typed text, but not handwriting/signatures. On the Redaction settings tab, choose 'Complex image analysis' OCR using AWS Textract (if you are using AWS) to redact these more complex elements (this service has a cost). Addtionally you can choose the method for PII identification. 'Local' gives quick, lower quality results, AWS Comprehend gives better results but has a cost.
Review suggested redactions on the 'Review redactions' tab using a point and click visual interface. See the 'Redaction settings' tab to choose which pages to redact, the type of information to redact (e.g. people, places), or terms to exclude from redaction. Please see the [User Guide](https://github.com/seanpedrick-case/doc_redaction/blob/main/README.md) for a walkthrough on how to use this and all other features in the app. The app accepts a maximum file size of 100mb. Please consider giving feedback for the quality of the answers underneath the redact buttons when the option appears, this will help to improve the app in future.
NOTE: In testing the app seems to find about 60% of personal information on a given (typed) page of text. It is essential that all outputs are checked **by a human** to ensure that all personal information has been removed.""")
# PDF / IMAGES TAB
with gr.Tab("PDFs/images"):
with gr.Accordion("Redact document", open = True):
in_doc_files = gr.File(label="Choose a document or image file (PDF, JPG, PNG)", file_count= "single", file_types=['.pdf', '.jpg', '.png', '.json'])
if RUN_AWS_FUNCTIONS == "1":
in_redaction_method = gr.Radio(label="Choose text extraction method. AWS Textract has a cost per page.", value = default_ocr_val, choices=[text_ocr_option, tesseract_ocr_option, textract_option])
pii_identification_method_drop = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost per 100 characters.", value = default_pii_detector, choices=[local_pii_detector, aws_pii_detector])
else:
in_redaction_method = gr.Radio(label="Choose text extraction method.", value = default_ocr_val, choices=[text_ocr_option, tesseract_ocr_option])
pii_identification_method_drop = gr.Radio(label = "Choose PII detection method.", value = default_pii_detector, choices=[local_pii_detector], visible=False)
gr.Markdown("""If you only want to redact certain pages, or certain entities (e.g. just email addresses), please go to the redaction settings tab.""")
document_redact_btn = gr.Button("Redact document(s)", variant="primary")
current_loop_page_number = gr.Number(value=0,precision=0, interactive=False, label = "Last redacted page in document", visible=False)
page_break_return = gr.Checkbox(value = False, label="Page break reached", visible=False)
with gr.Row():
output_summary = gr.Textbox(label="Output summary", scale=1)
output_file = gr.File(label="Output files", scale = 2)
latest_file_completed_text = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False)
with gr.Row():
convert_text_pdf_to_img_btn = gr.Button(value="Convert pdf to image-based pdf to apply redactions", variant="secondary", visible=False)
# Feedback elements are invisible until revealed by redaction action
pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
pdf_feedback_radio = gr.Radio(label = "Quality of results", choices=["The results were good", "The results were not good"], visible=False)
pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
# Object annotation
with gr.Tab("Review redactions", id="tab_object_annotation"):
with gr.Row():
annotation_last_page_button = gr.Button("Previous page", scale = 3)
annotate_current_page = gr.Number(value=1, label="Page (press enter to change)", precision=0, scale = 2)
annotate_max_pages = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 1)
annotation_next_page_button = gr.Button("Next page", scale = 3)
with gr.Row():
annotate_zoom_in = gr.Button("Zoom in")
annotate_zoom_out = gr.Button("Zoom out")
with gr.Row():
clear_all_redactions_on_page_btn = gr.Button("Clear all redactions on page")
annotation_button_apply = gr.Button("Apply revised redactions", variant="primary")
annotator = image_annotator(
label="Modify redaction boxes",
label_list=["Redaction"],
label_colors=[(0, 0, 0)],
show_label=False,
sources=None,#["upload"],
show_clear_button=False,
show_share_button=False,
show_remove_button=False,
interactive=False
)
with gr.Row():
annotation_last_page_button_bottom = gr.Button("Previous page", scale = 3)
annotate_current_page_bottom = gr.Number(value=1, label="Page (press enter to change)", precision=0, interactive=True, scale = 2)
annotate_max_pages_bottom = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 1)
annotation_next_page_button_bottom = gr.Button("Next page", scale = 3)
output_review_files = gr.File(label="Review output files", file_count='multiple')
upload_previous_review_file_btn = gr.Button("Review previously created redaction file (upload original PDF and ...redactions.json)")
# TEXT / TABULAR DATA TAB
with gr.Tab(label="Open text or Excel/csv files"):
gr.Markdown(
"""
### Choose open text or a tabular data file (xlsx or csv) to redact.
"""
)
with gr.Accordion("Paste open text", open = False):
in_text = gr.Textbox(label="Enter open text", lines=10)
with gr.Accordion("Upload xlsx or csv files", open = True):
in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'])
in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True)
in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).")
tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
with gr.Row():
text_output_summary = gr.Textbox(label="Output result")
text_output_file = gr.File(label="Output files")
text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False)
# Feedback elements are invisible until revealed by redaction action
data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.",
choices=["The results were good", "The results were not good"], visible=False, show_label=True)
data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
# SETTINGS TAB
with gr.Tab(label="Redaction settings"):
gr.Markdown(
"""
Define redaction settings that affect both document and open text redaction.
""")
with gr.Accordion("Settings for documents", open = True):
with gr.Row():
page_min = gr.Number(precision=0,minimum=0,maximum=9999, label="Lowest page to redact")
page_max = gr.Number(precision=0,minimum=0,maximum=9999, label="Highest page to redact")
with gr.Accordion("Settings for documents and open text/xlsx/csv files", open = True):
with gr.Row():
in_allow_list = gr.File(label="Import allow list file", file_count="multiple")
with gr.Column():
gr.Markdown("""Import allow list file - csv table with one column of a different word/phrase on each row (case sensitive). Terms in this file will not be redacted.""")
in_allow_list_text = gr.Textbox(label="Custom allow list load status")
with gr.Accordion("Add or remove entity types to redact", open = False):
in_redact_comprehend_entities = gr.Dropdown(value=chosen_comprehend_entities, choices=full_comprehend_entity_list, multiselect=True, label="Entities to redact - AWS Comprehend PII identification model (click close to down arrow for full list)")
in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Entities to redact - local PII identification model (click close to down arrow for full list)")
handwrite_signature_checkbox = gr.CheckboxGroup(label="AWS Textract settings", choices=["Redact all identified handwriting", "Redact all identified signatures"], value=["Redact all identified handwriting", "Redact all identified signatures"])
#with gr.Row():
in_redact_language = gr.Dropdown(value = "en", choices = ["en"], label="Redaction language (only English currently supported)", multiselect=False, visible=False)
with gr.Accordion("Settings for open text or xlsx/csv files", open = True):
anon_strat = gr.Radio(choices=["replace with <REDACTED>", "replace with <ENTITY_NAME>", "redact", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace with <REDACTED>")
log_files_output = gr.File(label="Log file output", interactive=False)
# If a custom allow list is uploaded
in_allow_list.change(fn=custom_regex_load, inputs=[in_allow_list], outputs=[in_allow_list_text, in_allow_list_state])
###
# PDF/IMAGE REDACTION
###
in_doc_files.upload(fn=get_input_file_names, inputs=[in_doc_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox])
document_redact_btn.click(fn = reset_state_vars, outputs=[pdf_doc_state, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number, textract_metadata_textbox, annotator]).\
then(fn = prepare_image_or_pdf, inputs=[in_doc_files, in_redaction_method, in_allow_list, latest_file_completed_text, output_summary, first_loop_state, annotate_max_pages, current_loop_page_number, all_image_annotations_state], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state], api_name="prepare_doc").\
then(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, in_redaction_method, in_allow_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number],
outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number], api_name="redact_doc").\
then(fn=update_annotator, inputs=[all_image_annotations_state, page_min, annotator_zoom_number], outputs=[annotator, annotate_current_page, annotate_current_page_bottom])
# If the app has completed a batch of pages, it will run this until the end of all pages in the document
current_loop_page_number.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, in_redaction_method, in_allow_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number],
outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number]).\
then(fn=update_annotator, inputs=[all_image_annotations_state, page_min, annotator_zoom_number], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
# If a file has been completed, the function will continue onto the next document
latest_file_completed_text.change(fn=update_annotator, inputs=[all_image_annotations_state, page_min, annotator_zoom_number], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page]).\
then(fn=reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title])
# latest_file_completed_text.change(fn = prepare_image_or_pdf, inputs=[in_doc_files, in_redaction_method, in_allow_list, latest_file_completed_text, output_summary, second_loop_state, annotate_max_pages, current_loop_page_number], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state]).\
# then(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redaction_method, in_allow_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return],
# outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state]).\
#then(fn=update_annotator, inputs=[all_image_annotations_state, page_min], outputs=[annotator, annotate_current_page]).\
#then(fn=reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title])
### REVIEW REDACTIONS
# Page controls at top
annotate_current_page.submit(
modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
annotation_last_page_button.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
annotation_next_page_button.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
# Zoom in and out on annotator
annotate_zoom_in.click(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
then(update_zoom, inputs=[annotator_zoom_number, annotate_current_page, zoom_true_bool], outputs=[annotator_zoom_number, annotate_current_page])
annotate_zoom_out.click(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
then(update_zoom, inputs=[annotator_zoom_number, annotate_current_page, zoom_false_bool], outputs=[annotator_zoom_number, annotate_current_page])
annotator_zoom_number.change(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
clear_all_redactions_on_page_btn.click(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, clear_all_page_redactions], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
#annotation_button_get.click(get_boxes_json, annotator, json_boxes)
annotation_button_apply.click(apply_redactions, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files], scroll_to_output=True)
# Page controls at bottom
annotate_current_page_bottom.submit(
modify_existing_page_redactions, inputs = [annotator, annotate_current_page_bottom, annotate_previous_page, all_image_annotations_state], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
annotation_last_page_button_bottom.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
annotation_next_page_button_bottom.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
# Upload previous files for modifying redactions
upload_previous_review_file_btn.click(fn=get_input_file_names, inputs=[output_review_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox]).\
then(fn = prepare_image_or_pdf, inputs=[output_review_files, in_redaction_method, in_allow_list, latest_file_completed_text, output_summary, second_loop_state, annotate_max_pages, current_loop_page_number, all_image_annotations_state, prepare_for_review_bool], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page])
###
# TABULAR DATA REDACTION
###
in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]).\
then(fn=get_input_file_names, inputs=[in_data_files], outputs=[data_file_name_textbox])
tabular_data_redact_btn.click(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state], api_name="redact_data")
# If the output file count text box changes, keep going with redacting each data file until done
text_tabular_files_done.change(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state]).\
then(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title])
###
# APP LOAD AND LOGGING
###
# Get connection details on app load
app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state, session_hash_textbox])
# If running on AWS, load in the default allow list file from S3
if RUN_AWS_FUNCTIONS == "1":
print("default_allow_list_output_folder_location:", default_allow_list_output_folder_location)
if not os.path.exists(default_allow_list_loc):
app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_allow_list_file, default_allow_list_output_folder_location]).\
then(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
else:
app.load(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
# Log usernames and times of access to file (to know who is using the app when running on AWS)
access_callback = gr.CSVLogger(dataset_file_name=log_file_name)
access_callback.setup([session_hash_textbox], access_logs_folder)
session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
# User submitted feedback for pdf redactions
pdf_callback = gr.CSVLogger(dataset_file_name=log_file_name)
pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], feedback_logs_folder)
pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args)), [pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])
# User submitted feedback for data redactions
data_callback = gr.CSVLogger(dataset_file_name=log_file_name)
data_callback.setup([data_feedback_radio, data_further_details_text, data_file_name_textbox], feedback_logs_folder)
data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, data_file_name_textbox], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])
# Log processing time/token usage when making a query
usage_callback = gr.CSVLogger(dataset_file_name=log_file_name)
usage_callback.setup([session_hash_textbox, doc_file_name_no_extension_textbox, data_file_name_textbox, estimated_time_taken_number, textract_metadata_textbox, pii_identification_method_drop, comprehend_query_number], usage_logs_folder)
latest_file_completed_text.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, doc_file_name_no_extension_textbox, data_file_name_textbox, estimated_time_taken_number, textract_metadata_textbox, pii_identification_method_drop, comprehend_query_number], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
# Launch the Gradio app
COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0')
print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}')
if __name__ == "__main__":
if os.environ['COGNITO_AUTH'] == "1":
app.queue(max_size=5).launch(show_error=True, auth=authenticate_user, max_file_size='100mb')
else:
app.queue(max_size=5).launch(show_error=True, inbrowser=True, max_file_size='100mb')
# AWS options - placeholder for possibility of storing data on s3 and retrieving it in app
# with gr.Tab(label="Advanced options"):
# with gr.Accordion(label = "AWS data access", open = True):
# aws_password_box = gr.Textbox(label="Password for AWS data access (ask the Data team if you don't have this)")
# with gr.Row():
# in_aws_file = gr.Dropdown(label="Choose file to load from AWS (only valid for API Gateway app)", choices=["None", "Lambeth borough plan"])
# load_aws_data_button = gr.Button(value="Load data from AWS", variant="secondary")
# aws_log_box = gr.Textbox(label="AWS data load status")
# ### Loading AWS data ###
# load_aws_data_button.click(fn=load_data_from_aws, inputs=[in_aws_file, aws_password_box], outputs=[in_doc_files, aws_log_box]) |