File size: 4,937 Bytes
7810536
 
 
 
 
 
 
f0f9378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7810536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import gradio as gr
from typing import List, Iterable, Dict, Union, Any, Optional, Iterator, Tuple
from tqdm import tqdm

from presidio_analyzer import DictAnalyzerResult, RecognizerResult #, AnalyzerEngine
from presidio_analyzer.nlp_engine import NlpArtifacts

def recognizer_result_from_dict(data: Dict) -> RecognizerResult:
    """
    Create RecognizerResult from a dictionary.

    :param data: e.g. {
        "entity_type": "NAME",
        "start": 24,
        "end": 32,
        "score": 0.8,
        "recognition_metadata": None
    }
    :return: RecognizerResult
    """

    entity_type = data.get("Type")
    start = data.get("BeginOffset")
    end = data.get("EndOffset")
    score = data.get("Score")
    analysis_explanation = None
    recognition_metadata = None
    
    return RecognizerResult(entity_type, start, end, score, analysis_explanation, recognition_metadata)

def analyze_iterator_custom(
        self,
        texts: Iterable[Union[str, bool, float, int]],
        language: str,
        list_length:int,
        progress=gr.Progress(),
        **kwargs,
    ) -> List[List[RecognizerResult]]:
        """
        Analyze an iterable of strings.

        :param texts: An list containing strings to be analyzed.
        :param language: Input language
        :param list_length: Length of the input list.
        :param kwargs: Additional parameters for the `AnalyzerEngine.analyze` method.
        """

        # validate types
        texts = self._validate_types(texts)

        # Process the texts as batch for improved performance
        nlp_artifacts_batch: Iterator[
            Tuple[str, NlpArtifacts]
        ] = self.analyzer_engine.nlp_engine.process_batch(
            texts=texts, language=language
        )

        

        list_results = []

        # Uncomment this if you want to show progress within a file
        #for text, nlp_artifacts in progress.tqdm(nlp_artifacts_batch, total = list_length, desc = "Analysing text for personal information", unit = "rows"):
        for text, nlp_artifacts in nlp_artifacts_batch:
            results = self.analyzer_engine.analyze(
                text=str(text), nlp_artifacts=nlp_artifacts, language=language, **kwargs
            )

            list_results.append(results)

        return list_results

def analyze_dict(
        self,
        input_dict: Dict[str, Union[Any, Iterable[Any]]],
        language: str,
        keys_to_skip: Optional[List[str]] = None,
        **kwargs,
    ) -> Iterator[DictAnalyzerResult]:
        """
        Analyze a dictionary of keys (strings) and values/iterable of values.

        Non-string values are returned as is.

        :param input_dict: The input dictionary for analysis
        :param language: Input language
        :param keys_to_skip: Keys to ignore during analysis
        :param kwargs: Additional keyword arguments
        for the `AnalyzerEngine.analyze` method.
        Use this to pass arguments to the analyze method,
        such as `ad_hoc_recognizers`, `context`, `return_decision_process`.
        See `AnalyzerEngine.analyze` for the full list.
        """

        context = []
        if "context" in kwargs:
            context = kwargs["context"]
            del kwargs["context"]

        if not keys_to_skip:
            keys_to_skip = []

            
        for key, value in input_dict.items():
            if not value or key in keys_to_skip:
                yield DictAnalyzerResult(key=key, value=value, recognizer_results=[])
                continue  # skip this key as requested

            # Add the key as an additional context
            specific_context = context[:]
            specific_context.append(key)

            if type(value) in (str, int, bool, float):
                results: List[RecognizerResult] = self.analyzer_engine.analyze(
                    text=str(value), language=language, context=[key], **kwargs
                )
            elif isinstance(value, dict):
                new_keys_to_skip = self._get_nested_keys_to_skip(key, keys_to_skip)
                results = self.analyze_dict(
                    input_dict=value,
                    language=language,
                    context=specific_context,
                    keys_to_skip=new_keys_to_skip,
                    **kwargs,
                )
            elif isinstance(value, Iterable):
                # Recursively iterate nested dicts
                list_length = len(value)

                results: List[List[RecognizerResult]] = analyze_iterator_custom(self,
                    texts=value,
                    language=language,
                    context=specific_context,
                    list_length=list_length,
                    **kwargs,
                )
            else:
                raise ValueError(f"type {type(value)} is unsupported.")

            yield DictAnalyzerResult(key=key, value=value, recognizer_results=results)