|
import os
|
|
import socket
|
|
|
|
|
|
os.environ['TLDEXTRACT_CACHE'] = 'tld/.tld_set_snapshot'
|
|
|
|
import gradio as gr
|
|
import pandas as pd
|
|
from datetime import datetime
|
|
from gradio_image_annotation import image_annotator
|
|
|
|
from tools.helper_functions import ensure_output_folder_exists, add_folder_to_path, put_columns_in_df, get_connection_params, output_folder, get_or_create_env_var, reveal_feedback_buttons, wipe_logs, custom_regex_load, reset_state_vars, load_in_default_allow_list
|
|
from tools.aws_functions import upload_file_to_s3, download_file_from_s3, RUN_AWS_FUNCTIONS, bucket_name
|
|
from tools.file_redaction import choose_and_run_redactor
|
|
from tools.file_conversion import prepare_image_or_pdf, get_input_file_names
|
|
from tools.redaction_review import apply_redactions, crop, get_boxes_json, modify_existing_page_redactions, decrease_page, increase_page, update_annotator
|
|
from tools.data_anonymise import anonymise_data_files
|
|
from tools.auth import authenticate_user
|
|
|
|
|
|
today_rev = datetime.now().strftime("%Y%m%d")
|
|
|
|
add_folder_to_path("tesseract/")
|
|
add_folder_to_path("poppler/poppler-24.02.0/Library/bin/")
|
|
|
|
ensure_output_folder_exists()
|
|
|
|
chosen_comprehend_entities = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE', 'PASSPORT_NUMBER','DRIVER_ID', 'USERNAME','PASSWORD', 'IP_ADDRESS','MAC_ADDRESS', 'LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER', 'INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER']
|
|
|
|
full_comprehend_entity_list = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE','SSN','DATE_TIME','PASSPORT_NUMBER','DRIVER_ID','URL','AGE','USERNAME','PASSWORD','AWS_ACCESS_KEY','AWS_SECRET_KEY','IP_ADDRESS','MAC_ADDRESS','ALL','LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER','CA_SOCIAL_INSURANCE_NUMBER','US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER','UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER','IN_PERMANENT_ACCOUNT_NUMBER','IN_NREGA','INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER','CA_HEALTH_NUMBER','IN_AADHAAR','IN_VOTER_NUMBER']
|
|
|
|
chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE"]
|
|
|
|
full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS']
|
|
|
|
language = 'en'
|
|
|
|
host_name = socket.gethostname()
|
|
feedback_logs_folder = 'feedback/' + today_rev + '/' + host_name + '/'
|
|
access_logs_folder = 'logs/' + today_rev + '/' + host_name + '/'
|
|
usage_logs_folder = 'usage/' + today_rev + '/' + host_name + '/'
|
|
|
|
text_ocr_option = "Simple text analysis - PDFs with selectable text"
|
|
tesseract_ocr_option = "Quick image analysis - typed text"
|
|
textract_option = "Complex image analysis - docs with handwriting/signatures (AWS Textract)"
|
|
|
|
local_pii_detector = "Local"
|
|
aws_pii_detector = "AWS Comprehend"
|
|
|
|
if RUN_AWS_FUNCTIONS == "1":
|
|
default_ocr_val = textract_option
|
|
default_pii_detector = local_pii_detector
|
|
else:
|
|
default_ocr_val = text_ocr_option
|
|
default_pii_detector = local_pii_detector
|
|
|
|
|
|
app = gr.Blocks(theme = gr.themes.Base())
|
|
|
|
with app:
|
|
|
|
|
|
|
|
|
|
|
|
pdf_doc_state = gr.State([])
|
|
all_image_annotations_state = gr.State([])
|
|
all_line_level_ocr_results_df_state = gr.State(pd.DataFrame())
|
|
all_decision_process_table_state = gr.State(pd.DataFrame())
|
|
|
|
in_allow_list_state = gr.State(pd.DataFrame())
|
|
|
|
session_hash_state = gr.State()
|
|
s3_output_folder_state = gr.State()
|
|
|
|
first_loop_state = gr.State(True)
|
|
second_loop_state = gr.State(False)
|
|
|
|
prepared_pdf_state = gr.State([])
|
|
images_pdf_state = gr.State([])
|
|
|
|
output_image_files_state = gr.State([])
|
|
output_file_list_state = gr.State([])
|
|
text_output_file_list_state = gr.State([])
|
|
log_files_output_list_state = gr.State([])
|
|
|
|
|
|
log_file_name = 'log.csv'
|
|
|
|
feedback_logs_state = gr.State(feedback_logs_folder + log_file_name)
|
|
feedback_s3_logs_loc_state = gr.State(feedback_logs_folder)
|
|
access_logs_state = gr.State(access_logs_folder + log_file_name)
|
|
access_s3_logs_loc_state = gr.State(access_logs_folder)
|
|
usage_logs_state = gr.State(usage_logs_folder + log_file_name)
|
|
usage_s3_logs_loc_state = gr.State(usage_logs_folder)
|
|
|
|
|
|
session_hash_textbox = gr.Textbox(label= "session_hash_textbox", value="", visible=False)
|
|
textract_metadata_textbox = gr.Textbox(label = "textract_metadata_textbox", value="", visible=False)
|
|
comprehend_query_number = gr.Number(label = "comprehend_query_number", value=0, visible=False)
|
|
|
|
doc_file_name_textbox = gr.Textbox(label = "doc_file_name_textbox", value="", visible=False)
|
|
doc_file_name_with_extension_textbox = gr.Textbox(label = "doc_file_name_with_extension_textbox", value="", visible=False)
|
|
data_file_name_textbox = gr.Textbox(label = "data_file_name_textbox", value="", visible=False)
|
|
|
|
estimated_time_taken_number = gr.Number(label = "estimated_time_taken_number", value=0.0, precision=1, visible=False)
|
|
annotate_previous_page = gr.Number(value=0, label="Previous page", precision=0, visible=False)
|
|
|
|
s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False)
|
|
|
|
|
|
default_allow_list_file_name = "default_allow_list.csv"
|
|
default_allow_list_loc = output_folder + "/" + default_allow_list_file_name
|
|
|
|
s3_default_bucket = gr.Textbox(label = "Default S3 bucket", value=bucket_name, visible=False)
|
|
s3_default_allow_list_file = gr.Textbox(label = "Default allow list file", value=default_allow_list_file_name, visible=False)
|
|
default_allow_list_output_folder_location = gr.Textbox(label = "Output default allow list location", value=default_allow_list_loc, visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gr.Markdown(
|
|
"""# Document redaction
|
|
|
|
Redact personally identifiable information (PII) from documents (pdf, images), open text, or tabular data (xlsx/csv/parquet). Documents/images can be redacted using 'Quick' image analysis that works fine for typed text, but not handwriting/signatures. On the Redaction settings tab, choose 'Complex image analysis' OCR using AWS Textract (if you are using AWS) to redact these more complex elements (this service has a cost). Addtionally you can choose the method for PII identification. 'Local' gives quick, lower quality results, AWS Comprehend gives better results but has a cost.
|
|
|
|
Review suggested redactions on the 'Review redactions' tab using a point and click visual interface. See the 'Redaction settings' tab to choose which pages to redact, the type of information to redact (e.g. people, places), or terms to exclude from redaction. Please see the [User Guide](https://github.com/seanpedrick-case/doc_redaction/blob/main/README.md) for a walkthrough on how to use this and all other features in the app. The app accepts a maximum file size of 100mb. Please consider giving feedback for the quality of the answers underneath the redact buttons when the option appears, this will help to improve the app in future.
|
|
|
|
NOTE: In testing the app seems to find about 60% of personal information on a given (typed) page of text. It is essential that all outputs are checked **by a human** to ensure that all personal information has been removed.""")
|
|
|
|
|
|
with gr.Tab("PDFs/images"):
|
|
with gr.Accordion("Redact document", open = True):
|
|
in_doc_files = gr.File(label="Choose a document or image file (PDF, JPG, PNG)", file_count= "single", file_types=['.pdf', '.jpg', '.png', '.json'])
|
|
in_redaction_method = gr.Radio(label="Choose text extract method. AWS Textract has a cost per page.", value = default_ocr_val, choices=[text_ocr_option, tesseract_ocr_option, textract_option])
|
|
pii_identification_method_drop = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost per 100 characters.", value = default_pii_detector, choices=[local_pii_detector, aws_pii_detector])
|
|
|
|
gr.Markdown("""If you only want to redact certain pages, or certain entities (e.g. just email addresses), please go to the redaction settings tab.""")
|
|
document_redact_btn = gr.Button("Redact document(s)", variant="primary")
|
|
current_loop_page_number = gr.Number(value=0,precision=0, interactive=False, label = "Last redacted page in document", visible=False)
|
|
page_break_return = gr.Checkbox(value = False, label="Page break reached", visible=False)
|
|
|
|
with gr.Row():
|
|
output_summary = gr.Textbox(label="Output summary", scale=1)
|
|
output_file = gr.File(label="Output files", scale = 2)
|
|
latest_file_completed_text = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False)
|
|
|
|
with gr.Row():
|
|
convert_text_pdf_to_img_btn = gr.Button(value="Convert pdf to image-based pdf to apply redactions", variant="secondary", visible=False)
|
|
|
|
|
|
pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
|
|
pdf_feedback_radio = gr.Radio(label = "Quality of results", choices=["The results were good", "The results were not good"], visible=False)
|
|
pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
|
|
pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
|
|
|
|
|
|
with gr.Tab("Review redactions", id="tab_object_annotation"):
|
|
|
|
with gr.Row():
|
|
annotation_last_page_button = gr.Button("Previous page", scale = 3)
|
|
annotate_current_page = gr.Number(value=1, label="Page (press enter to change)", precision=0, scale = 2)
|
|
annotate_max_pages = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 1)
|
|
annotation_next_page_button = gr.Button("Next page", scale = 3)
|
|
|
|
annotation_button_apply = gr.Button("Apply revised redactions", variant="primary")
|
|
|
|
annotator = image_annotator(
|
|
label="Modify redaction boxes",
|
|
label_list=["Redaction"],
|
|
label_colors=[(0, 0, 0)],
|
|
show_label=False,
|
|
sources=None,
|
|
show_clear_button=False,
|
|
show_share_button=False,
|
|
show_remove_button=False,
|
|
interactive=False
|
|
)
|
|
|
|
with gr.Row():
|
|
annotation_last_page_button_bottom = gr.Button("Previous page", scale = 3)
|
|
annotate_current_page_bottom = gr.Number(value=1, label="Page (press enter to change)", precision=0, interactive=True, scale = 2)
|
|
annotate_max_pages_bottom = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 1)
|
|
annotation_next_page_button_bottom = gr.Button("Next page", scale = 3)
|
|
|
|
output_review_files = gr.File(label="Review output files")
|
|
|
|
|
|
with gr.Tab(label="Open text or Excel/csv files"):
|
|
gr.Markdown(
|
|
"""
|
|
### Choose open text or a tabular data file (xlsx or csv) to redact.
|
|
"""
|
|
)
|
|
with gr.Accordion("Paste open text", open = False):
|
|
in_text = gr.Textbox(label="Enter open text", lines=10)
|
|
with gr.Accordion("Upload xlsx or csv files", open = True):
|
|
in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'])
|
|
|
|
in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True)
|
|
|
|
in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).")
|
|
|
|
tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
|
|
|
|
with gr.Row():
|
|
text_output_summary = gr.Textbox(label="Output result")
|
|
text_output_file = gr.File(label="Output files")
|
|
text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False)
|
|
|
|
|
|
data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
|
|
data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.",
|
|
choices=["The results were good", "The results were not good"], visible=False, show_label=True)
|
|
data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
|
|
data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
|
|
|
|
|
|
with gr.Tab(label="Redaction settings"):
|
|
gr.Markdown(
|
|
"""
|
|
Define redaction settings that affect both document and open text redaction.
|
|
""")
|
|
with gr.Accordion("Settings for documents", open = True):
|
|
|
|
with gr.Row():
|
|
page_min = gr.Number(precision=0,minimum=0,maximum=9999, label="Lowest page to redact")
|
|
page_max = gr.Number(precision=0,minimum=0,maximum=9999, label="Highest page to redact")
|
|
|
|
|
|
with gr.Accordion("Settings for documents and open text/xlsx/csv files", open = True):
|
|
with gr.Row():
|
|
in_allow_list = gr.File(label="Import allow list file", file_count="multiple")
|
|
with gr.Column():
|
|
gr.Markdown("""Import allow list file - csv table with one column of a different word/phrase on each row (case sensitive). Terms in this file will not be redacted.""")
|
|
in_allow_list_text = gr.Textbox(label="Custom allow list load status")
|
|
|
|
with gr.Accordion("Add or remove entity types to redact", open = False):
|
|
in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Entities to redact - local PII identification model (click close to down arrow for full list)")
|
|
|
|
in_redact_comprehend_entities = gr.Dropdown(value=chosen_comprehend_entities, choices=full_comprehend_entity_list, multiselect=True, label="Entities to redact - AWS Comprehend PII identification model (click close to down arrow for full list)")
|
|
|
|
handwrite_signature_checkbox = gr.CheckboxGroup(label="AWS Textract settings", choices=["Redact all identified handwriting", "Redact all identified signatures"], value=["Redact all identified handwriting", "Redact all identified signatures"])
|
|
|
|
in_redact_language = gr.Dropdown(value = "en", choices = ["en"], label="Redaction language (only English currently supported)", multiselect=False, visible=False)
|
|
|
|
|
|
with gr.Accordion("Settings for open text or xlsx/csv files", open = True):
|
|
anon_strat = gr.Radio(choices=["replace with <REDACTED>", "replace with <ENTITY_NAME>", "redact", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace with <REDACTED>")
|
|
|
|
log_files_output = gr.File(label="Log file output", interactive=False)
|
|
|
|
|
|
in_allow_list.change(fn=custom_regex_load, inputs=[in_allow_list], outputs=[in_allow_list_text, in_allow_list_state])
|
|
|
|
|
|
|
|
|
|
in_doc_files.upload(fn=get_input_file_names, inputs=[in_doc_files], outputs=[doc_file_name_textbox, doc_file_name_with_extension_textbox])
|
|
|
|
document_redact_btn.click(fn = reset_state_vars, outputs=[pdf_doc_state, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number, textract_metadata_textbox]).\
|
|
then(fn = prepare_image_or_pdf, inputs=[in_doc_files, in_redaction_method, in_allow_list, latest_file_completed_text, output_summary, first_loop_state, annotate_max_pages, current_loop_page_number], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state], api_name="prepare_doc").\
|
|
then(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, in_redaction_method, in_allow_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number],
|
|
outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number], api_name="redact_doc")
|
|
|
|
|
|
|
|
current_loop_page_number.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, in_redaction_method, in_allow_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number],
|
|
outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number])
|
|
|
|
|
|
latest_file_completed_text.change(fn=update_annotator, inputs=[all_image_annotations_state, page_min], outputs=[annotator, annotate_current_page, annotate_current_page_bottom]).\
|
|
then(fn=reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotate_current_page.submit(
|
|
modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
|
|
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page], outputs = [annotator, annotate_current_page, annotate_current_page_bottom])
|
|
|
|
annotation_last_page_button.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom]).\
|
|
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page], outputs = [annotator, annotate_current_page, annotate_current_page_bottom])
|
|
annotation_next_page_button.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
|
|
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page], outputs = [annotator, annotate_current_page, annotate_current_page_bottom])
|
|
|
|
|
|
annotation_button_apply.click(apply_redactions, inputs=[annotator, in_doc_files, pdf_doc_state, all_image_annotations_state, annotate_current_page], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files], scroll_to_output=True)
|
|
|
|
|
|
annotate_current_page_bottom.submit(
|
|
modify_existing_page_redactions, inputs = [annotator, annotate_current_page_bottom, annotate_previous_page, all_image_annotations_state], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page]).\
|
|
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page], outputs = [annotator, annotate_current_page, annotate_current_page_bottom])
|
|
|
|
annotation_last_page_button_bottom.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom]).\
|
|
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page], outputs = [annotator, annotate_current_page, annotate_current_page_bottom])
|
|
annotation_next_page_button_bottom.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
|
|
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page], outputs = [annotator, annotate_current_page, annotate_current_page_bottom])
|
|
|
|
|
|
|
|
|
|
in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]).\
|
|
then(fn=get_input_file_names, inputs=[in_data_files], outputs=[data_file_name_textbox])
|
|
|
|
tabular_data_redact_btn.click(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state], api_name="redact_data")
|
|
|
|
|
|
text_tabular_files_done.change(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state]).\
|
|
then(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state, session_hash_textbox])
|
|
|
|
|
|
if RUN_AWS_FUNCTIONS == "1":
|
|
print("default_allow_list_output_folder_location:", default_allow_list_output_folder_location)
|
|
if not os.path.exists(default_allow_list_loc):
|
|
app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_allow_list_file, default_allow_list_output_folder_location]).\
|
|
then(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
|
|
else:
|
|
app.load(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
|
|
|
|
|
|
access_callback = gr.CSVLogger(dataset_file_name=log_file_name)
|
|
access_callback.setup([session_hash_textbox], access_logs_folder)
|
|
session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\
|
|
then(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
|
|
|
|
|
|
pdf_callback = gr.CSVLogger(dataset_file_name=log_file_name)
|
|
pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, doc_file_name_textbox], feedback_logs_folder)
|
|
pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args)), [pdf_feedback_radio, pdf_further_details_text, doc_file_name_textbox], None, preprocess=False).\
|
|
then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])
|
|
|
|
|
|
data_callback = gr.CSVLogger(dataset_file_name=log_file_name)
|
|
data_callback.setup([data_feedback_radio, data_further_details_text, data_file_name_textbox], feedback_logs_folder)
|
|
data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, data_file_name_textbox], None, preprocess=False).\
|
|
then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])
|
|
|
|
|
|
usage_callback = gr.CSVLogger(dataset_file_name=log_file_name)
|
|
usage_callback.setup([session_hash_textbox, doc_file_name_textbox, data_file_name_textbox, estimated_time_taken_number, textract_metadata_textbox, pii_identification_method_drop, comprehend_query_number], usage_logs_folder)
|
|
estimated_time_taken_number.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, doc_file_name_textbox, data_file_name_textbox, estimated_time_taken_number, textract_metadata_textbox, pii_identification_method_drop, comprehend_query_number], None, preprocess=False).\
|
|
then(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
|
|
|
|
|
|
COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0')
|
|
print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}')
|
|
|
|
if __name__ == "__main__":
|
|
if os.environ['COGNITO_AUTH'] == "1":
|
|
app.queue(max_size=5).launch(show_error=True, auth=authenticate_user, max_file_size='100mb')
|
|
else:
|
|
app.queue(max_size=5).launch(show_error=True, inbrowser=True, max_file_size='100mb')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|