|
import os
|
|
|
|
|
|
os.environ['TLDEXTRACT_CACHE'] = 'tld/.tld_set_snapshot'
|
|
|
|
from tools.helper_functions import ensure_output_folder_exists, add_folder_to_path, put_columns_in_df, get_connection_params, output_folder, get_or_create_env_var
|
|
from tools.file_redaction import choose_and_run_redactor
|
|
from tools.file_conversion import prepare_image_or_text_pdf
|
|
from tools.data_anonymise import do_anonymise
|
|
from tools.auth import authenticate_user
|
|
|
|
import gradio as gr
|
|
|
|
add_folder_to_path("tesseract/")
|
|
add_folder_to_path("poppler/poppler-24.02.0/Library/bin/")
|
|
|
|
ensure_output_folder_exists()
|
|
|
|
chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE"]
|
|
full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS']
|
|
language = 'en'
|
|
|
|
|
|
app = gr.Blocks(theme = gr.themes.Base())
|
|
|
|
with app:
|
|
|
|
prepared_pdf_state = gr.State([])
|
|
output_image_files_state = gr.State([])
|
|
output_file_list_state = gr.State([])
|
|
|
|
session_hash_state = gr.State()
|
|
s3_output_folder_state = gr.State()
|
|
|
|
gr.Markdown(
|
|
"""
|
|
# Document redaction
|
|
|
|
Redact personal information from documents, open text, or xlsx/csv tabular data. See the 'Redaction settings' to change various settings such as which types of information to redact (e.g. people, places), or terms to exclude from redaction.
|
|
|
|
WARNING: This is a beta product. It is not 100% accurate, and it will miss some personal information. It is essential that all outputs are checked **by a human** to ensure that all personal information has been removed.
|
|
|
|
Other redaction entities are possible to include in this app easily, especially country-specific entities. If you want to use these, clone the repo locally and add entity names from [this link](https://microsoft.github.io/presidio/supported_entities/) to the 'full_entity_list' variable in app.py.
|
|
""")
|
|
|
|
with gr.Tab("PDFs/images"):
|
|
|
|
with gr.Accordion("Redact document", open = True):
|
|
in_file = gr.File(label="Choose document/image files (PDF, JPG, PNG)", file_count= "multiple", file_types=['.pdf', '.jpg', '.png'])
|
|
redact_btn = gr.Button("Redact document(s)", variant="primary")
|
|
|
|
with gr.Row():
|
|
output_summary = gr.Textbox(label="Output summary")
|
|
output_file = gr.File(label="Output file")
|
|
|
|
with gr.Row():
|
|
convert_text_pdf_to_img_btn = gr.Button(value="Convert pdf to image-based pdf to apply redactions", variant="secondary", visible=False)
|
|
|
|
with gr.Tab(label="Open text or Excel/csv files"):
|
|
gr.Markdown(
|
|
"""
|
|
### Choose open text or a tabular data file (xlsx or csv) to redact.
|
|
"""
|
|
)
|
|
with gr.Accordion("Paste open text", open = False):
|
|
in_text = gr.Textbox(label="Enter open text", lines=10)
|
|
with gr.Accordion("Upload xlsx (first sheet read only) or csv file(s)", open = False):
|
|
in_file_text = gr.File(label="Choose an xlsx (first sheet read only) or csv files", file_count= "multiple", file_types=['.xlsx', '.csv', '.parquet', '.csv.gz'])
|
|
|
|
in_colnames = gr.Dropdown(choices=["Choose a column"], multiselect = True, label="Select columns that you want to anonymise. Ensure that at least one named column exists in all files.")
|
|
|
|
match_btn = gr.Button("Anonymise text", variant="primary")
|
|
|
|
with gr.Row():
|
|
text_output_summary = gr.Textbox(label="Output result")
|
|
text_output_file = gr.File(label="Output file")
|
|
|
|
with gr.Tab(label="Redaction settings"):
|
|
gr.Markdown(
|
|
"""
|
|
Define redaction settings that affect both document and open text redaction.
|
|
""")
|
|
with gr.Accordion("Settings for documents", open = True):
|
|
in_redaction_method = gr.Radio(label="Default document redaction method - text analysis is faster is not useful for image-based PDFs. Imaged-based is slightly less accurate in general.", value = "Text analysis", choices=["Text analysis", "Image analysis"])
|
|
with gr.Accordion("Settings for open text or xlsx/csv files", open = True):
|
|
anon_strat = gr.Radio(choices=["replace", "redact", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace")
|
|
|
|
with gr.Accordion("Settings for documents and open text/xlsx/csv files", open = True):
|
|
in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Entities to redact (click close to down arrow for full list)")
|
|
with gr.Row():
|
|
in_redact_language = gr.Dropdown(value = "en", choices = ["en"], label="Redaction language (only English currently supported)", multiselect=False)
|
|
in_allow_list = gr.Dataframe(label="Allow list - enter a new term to ignore for redaction on each row e.g. Lambeth -> add new row -> Lambeth 2030", headers=["Allow list"], row_count=1, col_count=(1, 'fixed'), value=[[""]], type="array", column_widths=["100px"], datatype='str')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
redact_btn.click(fn = prepare_image_or_text_pdf, inputs=[in_file, in_redaction_method, in_allow_list],
|
|
outputs=[output_summary, prepared_pdf_state], api_name="prepare").\
|
|
then(fn = choose_and_run_redactor, inputs=[in_file, prepared_pdf_state, in_redact_language, in_redact_entities, in_redaction_method, in_allow_list],
|
|
outputs=[output_summary, output_file, output_file_list_state], api_name="redact_doc")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
in_file_text.upload(fn=put_columns_in_df, inputs=[in_file_text], outputs=[in_colnames])
|
|
match_btn.click(fn=do_anonymise, inputs=[in_file_text, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list], outputs=[text_output_summary, text_output_file], api_name="redact_text")
|
|
|
|
app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state])
|
|
|
|
|
|
COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0')
|
|
print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}')
|
|
|
|
if __name__ == "__main__":
|
|
|
|
if os.environ['COGNITO_AUTH'] == "1":
|
|
app.queue().launch(show_error=True, auth=authenticate_user)
|
|
else:
|
|
app.queue().launch(show_error=True, inbrowser=True) |