Can now redaction text or csv/xlsx files. Can redact multiple files. Embeds redactions as image-based file by default
7810536
from PIL import Image | |
from typing import List | |
import pandas as pd | |
from presidio_image_redactor import ImageRedactorEngine, ImageAnalyzerEngine | |
from presidio_image_redactor.entities import ImageRecognizerResult | |
from pdfminer.high_level import extract_pages | |
from tools.file_conversion import process_file | |
from pdfminer.layout import LTTextContainer, LTChar, LTTextLine #, LTAnno | |
from pikepdf import Pdf, Dictionary, Name | |
from gradio import Progress | |
import time | |
from collections import defaultdict # For efficient grouping | |
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold | |
from tools.helper_functions import get_file_path_end, output_folder | |
from tools.file_conversion import process_file, is_pdf, convert_text_pdf_to_img_pdf | |
import gradio as gr | |
def choose_and_run_redactor(file_paths:List[str], image_paths:List[str], language:str, chosen_redact_entities:List[str], in_redact_method:str, in_allow_list:List[List[str]]=None, progress=gr.Progress(track_tqdm=True)): | |
tic = time.perf_counter() | |
out_message = [] | |
out_file_paths = [] | |
if in_allow_list: | |
in_allow_list_flat = [item for sublist in in_allow_list for item in sublist] | |
print("File paths:", file_paths) | |
for file in progress.tqdm(file_paths, desc="Redacting files", unit = "files"): | |
file_path = file.name | |
if file_path: | |
file_path_without_ext = get_file_path_end(file_path) | |
if is_pdf(file_path) == False: | |
# If user has not submitted a pdf, assume it's an image | |
print("File is not a pdf, assuming that image analysis needs to be used.") | |
in_redact_method = "Image analysis" | |
else: | |
out_message = "No file selected" | |
print(out_message) | |
return out_message, out_file_paths | |
if in_redact_method == "Image analysis": | |
# Analyse and redact image-based pdf or image | |
# if is_pdf_or_image(file_path) == False: | |
# return "Please upload a PDF file or image file (JPG, PNG) for image analysis.", None | |
print("Redacting file as image-based pdf") | |
pdf_images = redact_image_pdf(file_path, image_paths, language, chosen_redact_entities, in_allow_list_flat) | |
out_image_file_path = output_folder + file_path_without_ext + "_redacted_as_img.pdf" | |
pdf_images[0].save(out_image_file_path, "PDF" ,resolution=100.0, save_all=True, append_images=pdf_images[1:]) | |
out_file_paths.append(out_image_file_path) | |
out_message.append("File '" + file_path_without_ext + "' successfully redacted and saved to file.") | |
elif in_redact_method == "Text analysis": | |
if is_pdf(file_path) == False: | |
return "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'.", None, None | |
# Analyse text-based pdf | |
print('Redacting file as text-based PDF') | |
pdf_text = redact_text_pdf(file_path, language, chosen_redact_entities, in_allow_list_flat) | |
out_text_file_path = output_folder + file_path_without_ext + "_text_redacted.pdf" | |
pdf_text.save(out_text_file_path) | |
#out_file_paths.append(out_text_file_path) | |
out_message_new = "File " + file_path_without_ext + " successfully redacted." | |
out_message.append(out_message_new) | |
# Convert message | |
convert_message="Converting PDF to image-based PDF to embed redactions." | |
#progress(0.8, desc=convert_message) | |
print(convert_message) | |
# Convert document to image-based document to 'embed' redactions | |
img_output_summary, img_output_file_path = convert_text_pdf_to_img_pdf(file_path, [out_text_file_path]) | |
out_file_paths.extend(img_output_file_path) | |
# Add confirmation for converting to image if you want | |
# out_message.append(img_output_summary) | |
else: | |
out_message = "No redaction method selected" | |
print(out_message) | |
return out_message, out_file_paths | |
toc = time.perf_counter() | |
out_time = f"Time taken: {toc - tic:0.1f} seconds." | |
print(out_time) | |
out_message_out = '\n'.join(out_message) | |
out_message_out = out_message_out + "\n\n" + out_time | |
return out_message_out, out_file_paths, out_file_paths | |
def merge_img_bboxes(bboxes, horizontal_threshold=150, vertical_threshold=25): | |
merged_bboxes = [] | |
grouped_bboxes = defaultdict(list) | |
# 1. Group by approximate vertical proximity | |
for box in bboxes: | |
grouped_bboxes[round(box.top / vertical_threshold)].append(box) | |
# 2. Merge within each group | |
for _, group in grouped_bboxes.items(): | |
group.sort(key=lambda box: box.left) | |
merged_box = group[0] | |
for next_box in group[1:]: | |
if next_box.left - (merged_box.left + merged_box.width) <= horizontal_threshold: | |
print("Merging a box") | |
# Calculate new dimensions for the merged box | |
new_left = min(merged_box.left, next_box.left) | |
new_top = min(merged_box.top, next_box.top) | |
new_width = max(merged_box.left + merged_box.width, next_box.left + next_box.width) - new_left | |
new_height = max(merged_box.top + merged_box.height, next_box.top + next_box.height) - new_top | |
merged_box = ImageRecognizerResult( | |
merged_box.entity_type, merged_box.start, merged_box.end, merged_box.score, new_left, new_top, new_width, new_height | |
) | |
else: | |
merged_bboxes.append(merged_box) | |
merged_box = next_box | |
merged_bboxes.append(merged_box) | |
return merged_bboxes | |
def redact_image_pdf(file_path:str, image_paths:List[str], language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, progress=Progress(track_tqdm=True)): | |
''' | |
Take an path for an image of a document, then run this image through the Presidio ImageAnalyzer and PIL to get a redacted page back. Adapted from Presidio ImageRedactorEngine. | |
''' | |
from PIL import Image, ImageChops, ImageDraw | |
fill = (0, 0, 0) | |
if not image_paths: | |
out_message = "PDF does not exist as images. Converting pages to image" | |
print(out_message) | |
#progress(0, desc=out_message) | |
image_paths = process_file(file_path) | |
images = [] | |
number_of_pages = len(image_paths) | |
out_message = "Redacting pages" | |
print(out_message) | |
#progress(0.1, desc=out_message) | |
#for i in progress.tqdm(range(0,number_of_pages), total=number_of_pages, unit="pages", desc="Redacting pages"): | |
for i in range(0, number_of_pages): | |
print("Redacting page ", str(i + 1)) | |
# Get the image to redact using PIL lib (pillow) | |
image = image_paths[i] #Image.open(image_paths[i]) | |
image = ImageChops.duplicate(image) | |
# %% | |
image_analyser = ImageAnalyzerEngine(nlp_analyser) | |
engine = ImageRedactorEngine(image_analyser) | |
if language == 'en': | |
ocr_lang = 'eng' | |
else: ocr_lang = language | |
bboxes = image_analyser.analyze(image,ocr_kwargs={"lang": ocr_lang}, | |
**{ | |
"allow_list": allow_list, | |
"language": language, | |
"entities": chosen_redact_entities, | |
"score_threshold": score_threshold | |
}) | |
#print("For page: ", str(i), "Bounding boxes: ", bboxes) | |
draw = ImageDraw.Draw(image) | |
merged_bboxes = merge_img_bboxes(bboxes) | |
print("For page: ", str(i), "Merged bounding boxes: ", merged_bboxes) | |
# 3. Draw the merged boxes (unchanged) | |
for box in merged_bboxes: | |
x0 = box.left | |
y0 = box.top | |
x1 = x0 + box.width | |
y1 = y0 + box.height | |
draw.rectangle([x0, y0, x1, y1], fill=fill) | |
images.append(image) | |
return images | |
def redact_text_pdf(filename:str, language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, progress=Progress(track_tqdm=True)): | |
''' | |
Redact chosen entities from a pdf that is made up of multiple pages that are not images. | |
''' | |
combined_analyzer_results = [] | |
analyser_explanations = [] | |
annotations_all_pages = [] | |
analyzed_bounding_boxes_df = pd.DataFrame() | |
# Horizontal distance between PII bounding boxes under/equal they are combined into one | |
combine_pixel_dist = 100 | |
pdf = Pdf.open(filename) | |
page_num = 0 | |
#for page in progress.tqdm(pdf.pages, total=len(pdf.pages), unit="pages", desc="Redacting pages"): | |
for page in pdf.pages: | |
print("Page number is: ", page_num + 1) | |
annotations_on_page = [] | |
analyzed_bounding_boxes = [] | |
for page_layout in extract_pages(filename, page_numbers = [page_num], maxpages=1): | |
analyzer_results = [] | |
for text_container in page_layout: | |
if isinstance(text_container, LTTextContainer): | |
text_to_analyze = text_container.get_text() | |
analyzer_results = [] | |
characters = [] | |
analyzer_results = nlp_analyser.analyze(text=text_to_analyze, | |
language=language, | |
entities=chosen_redact_entities, | |
score_threshold=score_threshold, | |
return_decision_process=False, | |
allow_list=allow_list) | |
characters = [char # This is what we want to include in the list | |
for line in text_container # Loop through each line in text_container | |
if isinstance(line, LTTextLine) # Check if the line is an instance of LTTextLine | |
for char in line] # Loop through each character in the line | |
#if isinstance(char, LTChar)] # Check if the character is not an instance of LTAnno #isinstance(char, LTChar) or | |
# if len(analyzer_results) > 0 and len(characters) > 0: | |
# analyzed_bounding_boxes.extend({"boundingBox": char.bbox, "result": result} for result in analyzer_results for char in characters[result.start:result.end] if isinstance(char, LTChar)) | |
# combined_analyzer_results.extend(analyzer_results) | |
# Inside the loop where you process analyzer_results: | |
if len(analyzer_results) > 0 and len(characters) > 0: | |
merged_bounding_boxes = [] | |
current_box = None | |
current_y = None | |
for result in analyzer_results: | |
for char in characters[result.start : result.end]: | |
if isinstance(char, LTChar): | |
char_box = list(char.bbox) | |
# Fix: Check if either current_y or current_box are None | |
if current_y is None or current_box is None: | |
# This is the first character, so initialize current_box and current_y | |
current_box = char_box | |
current_y = char_box[1] | |
else: # Now we have previous values to compare | |
print("Comparing values") | |
vertical_diff_bboxes = abs(char_box[1] - current_y) | |
horizontal_diff_bboxes = abs(char_box[0] - current_box[2]) | |
#print("Vertical distance with last bbox: ", str(vertical_diff_bboxes), "Horizontal distance: ", str(horizontal_diff_bboxes), "For result: ", result) | |
if ( | |
vertical_diff_bboxes <= 5 | |
and horizontal_diff_bboxes <= combine_pixel_dist | |
): | |
old_right_pos = current_box[2] | |
current_box[2] = char_box[2] | |
print("Old right pos: ", str(old_right_pos), "has been replaced with: ", str(current_box[2]), "for result: ", result) | |
else: | |
merged_bounding_boxes.append( | |
{"boundingBox": current_box, "result": result}) | |
current_box = char_box | |
current_y = char_box[1] | |
# Add the last box | |
if current_box: | |
merged_bounding_boxes.append({"boundingBox": current_box, "result": result}) | |
if not merged_bounding_boxes: | |
analyzed_bounding_boxes.extend({"boundingBox": char.bbox, "result": result} for result in analyzer_results for char in characters[result.start:result.end] if isinstance(char, LTChar)) | |
else: | |
analyzed_bounding_boxes.extend(merged_bounding_boxes) | |
combined_analyzer_results.extend(analyzer_results) | |
if len(analyzer_results) > 0: | |
# Create summary df of annotations to be made | |
analyzed_bounding_boxes_df_new = pd.DataFrame(analyzed_bounding_boxes) | |
analyzed_bounding_boxes_df_text = analyzed_bounding_boxes_df_new['result'].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True) | |
analyzed_bounding_boxes_df_text.columns = ["type", "start", "end", "score"] | |
analyzed_bounding_boxes_df_new = pd.concat([analyzed_bounding_boxes_df_new, analyzed_bounding_boxes_df_text], axis = 1) | |
analyzed_bounding_boxes_df_new['page'] = page_num + 1 | |
analyzed_bounding_boxes_df = pd.concat([analyzed_bounding_boxes_df, analyzed_bounding_boxes_df_new], axis = 0) | |
for analyzed_bounding_box in analyzed_bounding_boxes: | |
bounding_box = analyzed_bounding_box["boundingBox"] | |
annotation = Dictionary( | |
Type=Name.Annot, | |
Subtype=Name.Square, #Name.Highlight, | |
QuadPoints=[bounding_box[0], bounding_box[3], bounding_box[2], bounding_box[3], bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[1]], | |
Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]], | |
C=[0, 0, 0], | |
IC=[0, 0, 0], | |
CA=1, # Transparency | |
T=analyzed_bounding_box["result"].entity_type, | |
BS=Dictionary( | |
W=0, # Border width: 1 point | |
S=Name.S # Border style: solid | |
) | |
) | |
annotations_on_page.append(annotation) | |
annotations_all_pages.extend([annotations_on_page]) | |
print("For page number: ", page_num, " there are ", len(annotations_all_pages[page_num]), " annotations") | |
page.Annots = pdf.make_indirect(annotations_on_page) | |
page_num += 1 | |
analyzed_bounding_boxes_df.to_csv(output_folder + "annotations_made.csv") | |
return pdf | |