Version 0.1. Adapted code for pyinstaller local executable conversion (Windows)
2a4b347
# %% | |
from typing import List | |
from presidio_analyzer import AnalyzerEngine, PatternRecognizer, EntityRecognizer, Pattern, RecognizerResult | |
from presidio_analyzer.nlp_engine import SpacyNlpEngine, NlpArtifacts | |
import spacy | |
spacy.prefer_gpu() | |
from spacy.cli.download import download | |
import re | |
# %% | |
model_name = "en_core_web_lg" #"en_core_web_trf" | |
score_threshold = 0.001 | |
# %% [markdown] | |
# #### Custom recognisers | |
# %% | |
# Custom title recogniser | |
import re | |
titles_list = ["Sir", "Ma'am", "Madam", "Mr", "Mr.", "Mrs", "Mrs.", "Ms", "Ms.", "Miss", "Dr", "Dr.", "Professor"] | |
titles_regex = '\\b' + ' \\b|\\b'.join(rf"{re.escape(street_type)}" for street_type in titles_list) + ' \\b' | |
titles_pattern = Pattern(name="titles_pattern",regex=titles_regex, score = 1) | |
titles_recogniser = PatternRecognizer(supported_entity="TITLES", patterns = [titles_pattern]) | |
# %% | |
# Custom postcode recogniser | |
# Define the regex pattern in a Presidio `Pattern` object: | |
ukpostcode_pattern = Pattern(name="ukpostcode_pattern",regex="\\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2}|GIR ?0A{2})\\b|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$|\\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\\b", score = 1) | |
# Define the recognizer with one or more patterns | |
ukpostcode_recogniser = PatternRecognizer(supported_entity="UKPOSTCODE", patterns = [ukpostcode_pattern]) | |
# %% | |
# Examples for testing | |
#text = "I live in 510 Broad st SE5 9NG ." | |
#numbers_result = ukpostcode_recogniser.analyze(text=text, entities=["UKPOSTCODE"]) | |
#print("Result:") | |
#print(numbers_result) | |
# %% | |
def extract_street_name(text:str) -> str: | |
""" | |
Extracts the street name and preceding word (that should contain at least one number) from the given text. | |
""" | |
street_types = [ | |
'Street', 'St', 'Boulevard', 'Blvd', 'Highway', 'Hwy', 'Broadway', 'Freeway', | |
'Causeway', 'Cswy', 'Expressway', 'Way', 'Walk', 'Lane', 'Ln', 'Road', 'Rd', | |
'Avenue', 'Ave', 'Circle', 'Cir', 'Cove', 'Cv', 'Drive', 'Dr', 'Parkway', 'Pkwy', | |
'Park', 'Court', 'Ct', 'Square', 'Sq', 'Loop', 'Place', 'Pl', 'Parade', 'Estate', | |
'Alley', 'Arcade', 'Avenue', 'Ave', 'Bay', 'Bend', 'Brae', 'Byway', 'Close', 'Corner', 'Cove', | |
'Crescent', 'Cres', 'Cul-de-sac', 'Dell', 'Drive', 'Dr', 'Esplanade', 'Glen', 'Green', 'Grove', 'Heights', 'Hts', | |
'Mews', 'Parade', 'Path', 'Piazza', 'Promenade', 'Quay', 'Ridge', 'Row', 'Terrace', 'Ter', 'Track', 'Trail', 'View', 'Villas', | |
'Marsh', 'Embankment', 'Cut', 'Hill', 'Passage', 'Rise', 'Vale', 'Side' | |
] | |
# Dynamically construct the regex pattern with all possible street types | |
street_types_pattern = '|'.join(rf"{re.escape(street_type)}" for street_type in street_types) | |
# The overall regex pattern to capture the street name and preceding word(s) | |
pattern = rf'(?P<preceding_word>\w*\d\w*)\s*' | |
pattern += rf'(?P<street_name>\w+\s*\b(?:{street_types_pattern})\b)' | |
# Find all matches in text | |
matches = re.finditer(pattern, text, re.IGNORECASE) | |
start_positions = [] | |
end_positions = [] | |
for match in matches: | |
preceding_word = match.group('preceding_word').strip() | |
street_name = match.group('street_name').strip() | |
start_pos = match.start() | |
end_pos = match.end() | |
print(f"Start: {start_pos}, End: {end_pos}") | |
print(f"Preceding words: {preceding_word}") | |
print(f"Street name: {street_name}") | |
print() | |
start_positions.append(start_pos) | |
end_positions.append(end_pos) | |
return start_positions, end_positions | |
# %% | |
# Some examples for testing | |
#text = "1234 Main Street, 5678 Oak Rd, 9ABC Elm Blvd, 42 Eagle st." | |
#text = "Roberto lives in Five 10 Broad st in Oregon" | |
#text = "Roberto lives in 55 Oregon Square" | |
#text = "There is 51a no way I will do that" | |
#text = "I am writing to apply for" | |
#extract_street_name(text) | |
# %% | |
class StreetNameRecognizer(EntityRecognizer): | |
def load(self) -> None: | |
"""No loading is required.""" | |
pass | |
def analyze(self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts) -> List[RecognizerResult]: | |
""" | |
Logic for detecting a specific PII | |
""" | |
start_pos, end_pos = extract_street_name(text) | |
results = [] | |
for i in range(0, len(start_pos)): | |
result = RecognizerResult( | |
entity_type="STREETNAME", | |
start = start_pos[i], | |
end = end_pos[i], | |
score= 1 | |
) | |
results.append(result) | |
return results | |
street_recogniser = StreetNameRecognizer(supported_entities=["STREETNAME"]) | |
# %% | |
# Create a class inheriting from SpacyNlpEngine | |
class LoadedSpacyNlpEngine(SpacyNlpEngine): | |
def __init__(self, loaded_spacy_model): | |
super().__init__() | |
self.nlp = {"en": loaded_spacy_model} | |
# %% | |
# Load spacy model | |
try: | |
import en_core_web_lg | |
nlp = en_core_web_lg.load() | |
print("Successfully imported spaCy model") | |
except: | |
download("en_core_web_lg") | |
nlp = spacy.load("en_core_web_lg") | |
print("Successfully downloaded and imported spaCy model") | |
# Pass the loaded model to the new LoadedSpacyNlpEngine | |
loaded_nlp_engine = LoadedSpacyNlpEngine(loaded_spacy_model = nlp) | |
# %% | |
nlp_analyser = AnalyzerEngine(nlp_engine=loaded_nlp_engine, | |
default_score_threshold=score_threshold, | |
supported_languages=["en"], | |
log_decision_process=True, | |
) | |
# %% | |
nlp_analyser.registry.add_recognizer(street_recogniser) | |
nlp_analyser.registry.add_recognizer(ukpostcode_recogniser) | |
nlp_analyser.registry.add_recognizer(titles_recogniser) | |