document_redaction / tools /data_anonymise.py
seanpedrickcase's picture
Added support for AWS Comprehend for PII identification. OCR and detection results now written to main output
f0f9378
import re
import secrets
import base64
import time
import pandas as pd
from faker import Faker
from gradio import Progress
from typing import List, Dict, Any
from presidio_analyzer import AnalyzerEngine, BatchAnalyzerEngine, DictAnalyzerResult, RecognizerResult
from presidio_anonymizer import AnonymizerEngine, BatchAnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig, ConflictResolutionStrategy
from tools.helper_functions import output_folder, get_file_path_end, read_file, detect_file_type
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold
# Use custom version of analyze_dict to be able to track progress
from tools.presidio_analyzer_custom import analyze_dict
fake = Faker("en_UK")
def fake_first_name(x):
return fake.first_name()
def initial_clean(text):
#### Some of my cleaning functions
html_pattern_regex = r'<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0|&nbsp;'
html_start_pattern_end_dots_regex = r'<(.*?)\.\.'
non_ascii_pattern = r'[^\x00-\x7F]+'
multiple_spaces_regex = r'\s{2,}'
# Define a list of patterns and their replacements
patterns = [
(html_pattern_regex, ' '),
(html_start_pattern_end_dots_regex, ' '),
(non_ascii_pattern, ' '),
(multiple_spaces_regex, ' ')
]
# Apply each regex replacement
for pattern, replacement in patterns:
text = re.sub(pattern, replacement, text)
return text
def process_recognizer_result(result, recognizer_result, data_row, dictionary_key, df_dict, keys_to_keep):
output = []
if hasattr(result, 'value'):
text = result.value[data_row]
else:
text = ""
if isinstance(recognizer_result, list):
for sub_result in recognizer_result:
if isinstance(text, str):
found_text = text[sub_result.start:sub_result.end]
else:
found_text = ''
analysis_explanation = {key: sub_result.__dict__[key] for key in keys_to_keep}
analysis_explanation.update({
'data_row': str(data_row),
'column': list(df_dict.keys())[dictionary_key],
'entity': found_text
})
output.append(str(analysis_explanation))
return output
# Writing decision making process to file
def generate_decision_process_output(analyzer_results: List[DictAnalyzerResult], df_dict: Dict[str, List[Any]]) -> str:
"""
Generate a detailed output of the decision process for entity recognition.
This function takes the results from the analyzer and the original data dictionary,
and produces a string output detailing the decision process for each recognized entity.
It includes information such as entity type, position, confidence score, and the context
in which the entity was found.
Args:
analyzer_results (List[DictAnalyzerResult]): The results from the entity analyzer.
df_dict (Dict[str, List[Any]]): The original data in dictionary format.
Returns:
str: A string containing the detailed decision process output.
"""
decision_process_output = []
keys_to_keep = ['entity_type', 'start', 'end']
# Run through each column to analyse for PII
for i, result in enumerate(analyzer_results):
# If a single result
if isinstance(result, RecognizerResult):
decision_process_output.extend(process_recognizer_result(result, result, 0, i, df_dict, keys_to_keep))
# If a list of results
elif isinstance(result, list) or isinstance(result, DictAnalyzerResult):
for x, recognizer_result in enumerate(result.recognizer_results):
decision_process_output.extend(process_recognizer_result(result, recognizer_result, x, i, df_dict, keys_to_keep))
else:
try:
decision_process_output.extend(process_recognizer_result(result, result, 0, i, df_dict, keys_to_keep))
except Exception as e:
print(e)
decision_process_output_str = '\n'.join(decision_process_output)
print("decision_process_output_str:\n\n", decision_process_output_str)
return decision_process_output_str
def anon_consistent_names(df):
# ## Pick out common names and replace them with the same person value
df_dict = df.to_dict(orient="list")
analyzer = AnalyzerEngine()
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=analyzer)
analyzer_results = batch_analyzer.analyze_dict(df_dict, language="en")
analyzer_results = list(analyzer_results)
# + tags=[]
text = analyzer_results[3].value
# + tags=[]
recognizer_result = str(analyzer_results[3].recognizer_results)
# + tags=[]
recognizer_result
# + tags=[]
data_str = recognizer_result # abbreviated for brevity
# Adjusting the parse_dict function to handle trailing ']'
# Splitting the main data string into individual list strings
list_strs = data_str[1:-1].split('], [')
def parse_dict(s):
s = s.strip('[]') # Removing any surrounding brackets
items = s.split(', ')
d = {}
for item in items:
key, value = item.split(': ')
if key == 'score':
d[key] = float(value)
elif key in ['start', 'end']:
d[key] = int(value)
else:
d[key] = value
return d
# Re-running the improved processing code
result = []
for lst_str in list_strs:
# Splitting each list string into individual dictionary strings
dict_strs = lst_str.split(', type: ')
dict_strs = [dict_strs[0]] + ['type: ' + s for s in dict_strs[1:]] # Prepending "type: " back to the split strings
# Parsing each dictionary string
dicts = [parse_dict(d) for d in dict_strs]
result.append(dicts)
#result
# + tags=[]
names = []
for idx, paragraph in enumerate(text):
paragraph_texts = []
for dictionary in result[idx]:
if dictionary['type'] == 'PERSON':
paragraph_texts.append(paragraph[dictionary['start']:dictionary['end']])
names.append(paragraph_texts)
# + tags=[]
# Flatten the list of lists and extract unique names
unique_names = list(set(name for sublist in names for name in sublist))
# + tags=[]
fake_names = pd.Series(unique_names).apply(fake_first_name)
# + tags=[]
mapping_df = pd.DataFrame(data={"Unique names":unique_names,
"Fake names": fake_names})
# + tags=[]
# Convert mapping dataframe to dictionary
# Convert mapping dataframe to dictionary, adding word boundaries for full-word match
name_map = {r'\b' + k + r'\b': v for k, v in zip(mapping_df['Unique names'], mapping_df['Fake names'])}
# + tags=[]
name_map
# + tags=[]
scrubbed_df_consistent_names = df.replace(name_map, regex = True)
# + tags=[]
scrubbed_df_consistent_names
return scrubbed_df_consistent_names
def anonymise_script(df, anon_strat, language:str, chosen_redact_entities:List[str], in_allow_list:List[str]=[], progress=Progress(track_tqdm=False)):
print("Identifying personal information")
analyse_tic = time.perf_counter()
key_string = ""
# DataFrame to dict
df_dict = df.to_dict(orient="list")
if in_allow_list:
in_allow_list_flat = in_allow_list #[item for sublist in in_allow_list for item in sublist]
else:
in_allow_list_flat = []
#analyzer = nlp_analyser #AnalyzerEngine()
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=nlp_analyser)
anonymizer = AnonymizerEngine()#conflict_resolution=ConflictResolutionStrategy.MERGE_SIMILAR_OR_CONTAINED)
batch_anonymizer = BatchAnonymizerEngine(anonymizer_engine = anonymizer)
#print("Allow list:", in_allow_list)
#print("Input data keys:", df_dict.keys())
# Use custom analyzer to be able to track progress with Gradio
analyzer_results = analyze_dict(batch_analyzer, df_dict, language=language,
entities=chosen_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=in_allow_list_flat)
analyzer_results = list(analyzer_results)
# Usage in the main function:
decision_process_output_str = generate_decision_process_output(analyzer_results, df_dict)
#print("decision_process_output_str:\n\n", decision_process_output_str)
analyse_toc = time.perf_counter()
analyse_time_out = f"Analysing the text took {analyse_toc - analyse_tic:0.1f} seconds."
print(analyse_time_out)
# Create faker function (note that it has to receive a value)
fake = Faker("en_UK")
def fake_first_name(x):
return fake.first_name()
# Set up the anonymization configuration WITHOUT DATE_TIME
simple_replace_config = eval('{"DEFAULT": OperatorConfig("replace", {"new_value": "REDACTED"})}')
replace_config = eval('{"DEFAULT": OperatorConfig("replace")}')
redact_config = eval('{"DEFAULT": OperatorConfig("redact")}')
hash_config = eval('{"DEFAULT": OperatorConfig("hash")}')
mask_config = eval('{"DEFAULT": OperatorConfig("mask", {"masking_char":"*", "chars_to_mask":100, "from_end":True})}')
people_encrypt_config = eval('{"PERSON": OperatorConfig("encrypt", {"key": key_string})}') # The encryption is using AES cypher in CBC mode and requires a cryptographic key as an input for both the encryption and the decryption.
fake_first_name_config = eval('{"PERSON": OperatorConfig("custom", {"lambda": fake_first_name})}')
if anon_strat == "replace with <REDACTED>": chosen_mask_config = simple_replace_config
if anon_strat == "replace with <ENTITY_NAME>": chosen_mask_config = replace_config
if anon_strat == "redact": chosen_mask_config = redact_config
if anon_strat == "hash": chosen_mask_config = hash_config
if anon_strat == "mask": chosen_mask_config = mask_config
if anon_strat == "encrypt":
chosen_mask_config = people_encrypt_config
# Generate a 128-bit AES key. Then encode the key using base64 to get a string representation
key = secrets.token_bytes(16) # 128 bits = 16 bytes
key_string = base64.b64encode(key).decode('utf-8')
elif anon_strat == "fake_first_name": chosen_mask_config = fake_first_name_config
# I think in general people will want to keep date / times
keep_date_config = eval('{"DATE_TIME": OperatorConfig("keep")}')
combined_config = {**chosen_mask_config, **keep_date_config}
combined_config
anonymizer_results = batch_anonymizer.anonymize_dict(analyzer_results, operators=combined_config)
scrubbed_df = pd.DataFrame(anonymizer_results)
return scrubbed_df, key_string, decision_process_output_str
def anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, excel_sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, anon_xlsx_export_file_name, log_files_output_paths):
def check_lists(list1, list2):
return any(string in list2 for string in list1)
def get_common_strings(list1, list2):
"""
Finds the common strings between two lists.
Args:
list1: The first list of strings.
list2: The second list of strings.
Returns:
A list containing the common strings.
"""
common_strings = []
for string in list1:
if string in list2:
common_strings.append(string)
return common_strings
# Check for chosen col, skip file if not found
all_cols_original_order = list(anon_df.columns)
any_cols_found = check_lists(chosen_cols, all_cols_original_order)
if any_cols_found == False:
out_message = "No chosen columns found in dataframe: " + out_file_part
print(out_message)
else:
chosen_cols_in_anon_df = get_common_strings(chosen_cols, all_cols_original_order)
# Split dataframe to keep only selected columns
print("Remaining columns to redact:", chosen_cols_in_anon_df)
anon_df_part = anon_df[chosen_cols_in_anon_df]
anon_df_remain = anon_df.drop(chosen_cols_in_anon_df, axis = 1)
# Anonymise the selected columns
anon_df_part_out, key_string, decision_process_output_str = anonymise_script(anon_df_part, anon_strat, language, chosen_redact_entities, in_allow_list)
# Rejoin the dataframe together
anon_df_out = pd.concat([anon_df_part_out, anon_df_remain], axis = 1)
anon_df_out = anon_df_out[all_cols_original_order]
# Export file
# Rename anonymisation strategy for file path naming
if anon_strat == "replace with <REDACTED>": anon_strat_txt = "redact_simple"
elif anon_strat == "replace with <ENTITY_NAME>": anon_strat_txt = "redact_entity_type"
else: anon_strat_txt = anon_strat
# If the file is an xlsx, add a new sheet to the existing xlsx. Otherwise, write to csv
if file_type == 'xlsx':
anon_export_file_name = anon_xlsx_export_file_name
# Create a Pandas Excel writer using XlsxWriter as the engine.
with pd.ExcelWriter(anon_xlsx_export_file_name, engine='openpyxl', mode='a') as writer:
# Write each DataFrame to a different worksheet.
anon_df_out.to_excel(writer, sheet_name=excel_sheet_name, index=None)
decision_process_log_output_file = anon_xlsx_export_file_name + "_" + excel_sheet_name + "_decision_process_output.txt"
with open(decision_process_log_output_file, "w") as f:
f.write(decision_process_output_str)
else:
anon_export_file_name = output_folder + out_file_part + "_anon_" + anon_strat_txt + ".csv"
anon_df_out.to_csv(anon_export_file_name, index = None)
decision_process_log_output_file = anon_export_file_name + "_decision_process_output.txt"
with open(decision_process_log_output_file, "w") as f:
f.write(decision_process_output_str)
out_file_paths.append(anon_export_file_name)
log_files_output_paths.append(decision_process_log_output_file)
# As files are created in a loop, there is a risk of duplicate file names being output. Use set to keep uniques.
out_file_paths = list(set(out_file_paths))
# Print result text to output text box if just anonymising open text
if anon_file=='open_text':
out_message = [anon_df_out['text'][0]]
return out_file_paths, out_message, key_string, log_files_output_paths
def anonymise_data_files(file_paths:List[str], in_text:str, anon_strat:str, chosen_cols:List[str], language:str, chosen_redact_entities:List[str], in_allow_list:List[str]=None, latest_file_completed:int=0, out_message:list=[], out_file_paths:list = [], log_files_output_paths:list = [], in_excel_sheets:list=[], first_loop_state:bool=False, progress=Progress(track_tqdm=True)):
tic = time.perf_counter()
# If this is the first time around, set variables to 0/blank
if first_loop_state==True:
latest_file_completed = 0
out_message = []
out_file_paths = []
# Load file
# If out message or out_file_paths are blank, change to a list so it can be appended to
if isinstance(out_message, str):
out_message = [out_message]
if not out_file_paths:
out_file_paths = []
if in_allow_list:
in_allow_list_flat = in_allow_list #[item for sublist in in_allow_list for item in sublist]
else:
in_allow_list_flat = []
anon_df = pd.DataFrame()
#out_file_paths = []
# Check if files and text exist
if not file_paths:
if in_text:
file_paths=['open_text']
else:
out_message = "Please enter text or a file to redact."
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths
# If we have already redacted the last file, return the input out_message and file list to the relevant components
if latest_file_completed >= len(file_paths):
print("Last file reached, returning files:", str(latest_file_completed))
# Set to a very high number so as not to mess with subsequent file processing by the user
latest_file_completed = 99
final_out_message = '\n'.join(out_message)
return final_out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths
file_path_loop = [file_paths[int(latest_file_completed)]]
for anon_file in progress.tqdm(file_path_loop, desc="Anonymising files", unit = "file"):
if anon_file=='open_text':
anon_df = pd.DataFrame(data={'text':[in_text]})
chosen_cols=['text']
sheet_name = ""
file_type = ""
out_file_part = anon_file
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths)
else:
# If file is an xlsx, we are going to run through all the Excel sheets to anonymise them separately.
file_type = detect_file_type(anon_file)
print("File type is:", file_type)
out_file_part = get_file_path_end(anon_file.name)
if file_type == 'xlsx':
print("Running through all xlsx sheets")
#anon_xlsx = pd.ExcelFile(anon_file)
if not in_excel_sheets:
out_message.append("No Excel sheets selected. Please select at least one to anonymise.")
continue
anon_xlsx = pd.ExcelFile(anon_file)
# Create xlsx file:
anon_xlsx_export_file_name = output_folder + out_file_part + "_redacted.xlsx"
from openpyxl import Workbook
wb = Workbook()
wb.save(anon_xlsx_export_file_name)
# Iterate through the sheet names
for sheet_name in in_excel_sheets:
# Read each sheet into a DataFrame
if sheet_name not in anon_xlsx.sheet_names:
continue
anon_df = pd.read_excel(anon_file, sheet_name=sheet_name)
# Process the DataFrame (e.g., print its contents)
print(f"Sheet Name: {sheet_name}")
print(anon_df.head()) # Print the first few rows
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, anon_xlsx_export_file_name, log_files_output_paths)
else:
sheet_name = ""
anon_df = read_file(anon_file)
out_file_part = get_file_path_end(anon_file.name)
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths)
# Increase latest file completed count unless we are at the last file
if latest_file_completed != len(file_paths):
print("Completed file number:", str(latest_file_completed))
latest_file_completed += 1
toc = time.perf_counter()
out_time = f"in {toc - tic:0.1f} seconds."
print(out_time)
if anon_strat == "encrypt":
out_message.append(". Your decryption key is " + key_string + ".")
out_message.append("Anonymisation of file '" + out_file_part + "' successfully completed in")
out_message_out = '\n'.join(out_message)
out_message_out = out_message_out + " " + out_time
out_message_out = out_message_out + "\n\nGo to to the Redaction settings tab to see redaction logs. Please give feedback on the results below to help improve this app."
return out_message_out, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths