Major update. General code revision. Improved config variables. Dataframe based review frame now includes text, items can be searched and excluded. Costs now estimated. Option for adding cost codes added. Option to extract text only.
0ea8b9e
import boto3 | |
import time | |
import os | |
import json | |
import logging | |
from urllib.parse import urlparse | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
def analyze_pdf_with_textract( | |
local_pdf_path: str, | |
s3_bucket_name: str, | |
s3_input_prefix: str, | |
s3_output_prefix: str, | |
local_output_dir: str, | |
aws_region: str = None, # Optional: specify region if not default | |
poll_interval_seconds: int = 5, | |
max_polling_attempts: int = 120 # ~10 minutes total wait time | |
): | |
""" | |
Uploads a local PDF to S3, starts a Textract analysis job (detecting text & signatures), | |
waits for completion, and downloads the output JSON from S3 to a local directory. | |
Args: | |
local_pdf_path (str): Path to the local PDF file. | |
s3_bucket_name (str): Name of the S3 bucket to use. | |
s3_input_prefix (str): S3 prefix (folder) to upload the input PDF. | |
s3_output_prefix (str): S3 prefix (folder) where Textract should write output. | |
local_output_dir (str): Local directory to save the downloaded JSON results. | |
aws_region (str, optional): AWS region name. Defaults to boto3 default region. | |
poll_interval_seconds (int): Seconds to wait between polling Textract status. | |
max_polling_attempts (int): Maximum number of times to poll Textract status. | |
Returns: | |
str: Path to the downloaded local JSON output file, or None if failed. | |
Raises: | |
FileNotFoundError: If the local_pdf_path does not exist. | |
boto3.exceptions.NoCredentialsError: If AWS credentials are not found. | |
Exception: For other AWS errors or job failures. | |
""" | |
if not os.path.exists(local_pdf_path): | |
raise FileNotFoundError(f"Input PDF not found: {local_pdf_path}") | |
if not os.path.exists(local_output_dir): | |
os.makedirs(local_output_dir) | |
logging.info(f"Created local output directory: {local_output_dir}") | |
# Initialize boto3 clients | |
session = boto3.Session(region_name=aws_region) | |
s3_client = session.client('s3') | |
textract_client = session.client('textract') | |
# --- 1. Upload PDF to S3 --- | |
pdf_filename = os.path.basename(local_pdf_path) | |
s3_input_key = os.path.join(s3_input_prefix, pdf_filename).replace("\\", "/") # Ensure forward slashes for S3 | |
logging.info(f"Uploading '{local_pdf_path}' to 's3://{s3_bucket_name}/{s3_input_key}'...") | |
try: | |
s3_client.upload_file(local_pdf_path, s3_bucket_name, s3_input_key) | |
logging.info("Upload successful.") | |
except Exception as e: | |
logging.error(f"Failed to upload PDF to S3: {e}") | |
raise | |
# --- 2. Start Textract Document Analysis --- | |
logging.info("Starting Textract document analysis job...") | |
try: | |
response = textract_client.start_document_analysis( | |
DocumentLocation={ | |
'S3Object': { | |
'Bucket': s3_bucket_name, | |
'Name': s3_input_key | |
} | |
}, | |
FeatureTypes=['SIGNATURES', 'FORMS', 'TABLES'], # Analyze for signatures, forms, and tables | |
OutputConfig={ | |
'S3Bucket': s3_bucket_name, | |
'S3Prefix': s3_output_prefix | |
} | |
# Optional: Add NotificationChannel for SNS topic notifications | |
# NotificationChannel={ | |
# 'SNSTopicArn': 'YOUR_SNS_TOPIC_ARN', | |
# 'RoleArn': 'YOUR_IAM_ROLE_ARN_FOR_TEXTRACT_TO_ACCESS_SNS' | |
# } | |
) | |
job_id = response['JobId'] | |
logging.info(f"Textract job started with JobId: {job_id}") | |
except Exception as e: | |
logging.error(f"Failed to start Textract job: {e}") | |
raise | |
# --- 3. Poll for Job Completion --- | |
job_status = 'IN_PROGRESS' | |
attempts = 0 | |
logging.info("Polling Textract for job completion status...") | |
while job_status == 'IN_PROGRESS' and attempts < max_polling_attempts: | |
attempts += 1 | |
try: | |
response = textract_client.get_document_analysis(JobId=job_id) | |
job_status = response['JobStatus'] | |
logging.info(f"Polling attempt {attempts}/{max_polling_attempts}. Job status: {job_status}") | |
if job_status == 'IN_PROGRESS': | |
time.sleep(poll_interval_seconds) | |
elif job_status == 'SUCCEEDED': | |
logging.info("Textract job succeeded.") | |
break | |
elif job_status in ['FAILED', 'PARTIAL_SUCCESS']: | |
status_message = response.get('StatusMessage', 'No status message provided.') | |
warnings = response.get('Warnings', []) | |
logging.error(f"Textract job ended with status: {job_status}. Message: {status_message}") | |
if warnings: | |
logging.warning(f"Warnings: {warnings}") | |
# Decide if PARTIAL_SUCCESS should proceed or raise error | |
# For simplicity here, we raise for both FAILED and PARTIAL_SUCCESS | |
raise Exception(f"Textract job {job_id} failed or partially failed. Status: {job_status}. Message: {status_message}") | |
else: | |
# Should not happen based on documentation, but handle defensively | |
raise Exception(f"Unexpected Textract job status: {job_status}") | |
except textract_client.exceptions.InvalidJobIdException: | |
logging.error(f"Invalid JobId: {job_id}. This might happen if the job expired (older than 7 days) or never existed.") | |
raise | |
except Exception as e: | |
logging.error(f"Error while polling Textract status for job {job_id}: {e}") | |
raise | |
if job_status != 'SUCCEEDED': | |
raise TimeoutError(f"Textract job {job_id} did not complete successfully within the polling limit.") | |
# --- 4. Download Output JSON from S3 --- | |
# Textract typically creates output under s3_output_prefix/job_id/ | |
# There might be multiple JSON files if pagination occurred during writing. | |
# Usually, for smaller docs, there's one file, often named '1'. | |
# For robust handling, list objects and find the JSON(s). | |
s3_output_key_prefix = os.path.join(s3_output_prefix, job_id).replace("\\", "/") + "/" | |
logging.info(f"Searching for output files in s3://{s3_bucket_name}/{s3_output_key_prefix}") | |
downloaded_file_path = None | |
try: | |
list_response = s3_client.list_objects_v2( | |
Bucket=s3_bucket_name, | |
Prefix=s3_output_key_prefix | |
) | |
output_files = list_response.get('Contents', []) | |
if not output_files: | |
# Sometimes Textract might take a moment longer to write the output after SUCCEEDED status | |
logging.warning("No output files found immediately after job success. Waiting briefly and retrying list...") | |
time.sleep(5) | |
list_response = s3_client.list_objects_v2( | |
Bucket=s3_bucket_name, | |
Prefix=s3_output_key_prefix | |
) | |
output_files = list_response.get('Contents', []) | |
if not output_files: | |
logging.error(f"No output files found in s3://{s3_bucket_name}/{s3_output_key_prefix}") | |
# You could alternatively try getting results via get_document_analysis pagination here | |
# but sticking to the request to download from S3 output path. | |
raise FileNotFoundError(f"Textract output files not found in S3 path: s3://{s3_bucket_name}/{s3_output_key_prefix}") | |
# Usually, we only need the first/main JSON output file(s) | |
# For simplicity, download the first one found. A more complex scenario might merge multiple files. | |
# Filter out potential directory markers if any key ends with '/' | |
json_files_to_download = [f for f in output_files if f['Key'] != s3_output_key_prefix and not f['Key'].endswith('/')] | |
if not json_files_to_download: | |
logging.error(f"No JSON files found (only prefix marker?) in s3://{s3_bucket_name}/{s3_output_key_prefix}") | |
raise FileNotFoundError(f"Textract output JSON files not found in S3 path: s3://{s3_bucket_name}/{s3_output_key_prefix}") | |
# Let's download the first JSON found. Often it's the only one or the main one. | |
s3_output_key = json_files_to_download[0]['Key'] | |
output_filename_base = os.path.basename(pdf_filename).replace('.pdf', '') | |
local_output_filename = f"{output_filename_base}_textract_output_{job_id}.json" | |
local_output_path = os.path.join(local_output_dir, local_output_filename) | |
logging.info(f"Downloading Textract output from 's3://{s3_bucket_name}/{s3_output_key}' to '{local_output_path}'...") | |
s3_client.download_file(s3_bucket_name, s3_output_key, local_output_path) | |
logging.info("Download successful.") | |
downloaded_file_path = local_output_path | |
# Log if multiple files were found, as user might need to handle them | |
if len(json_files_to_download) > 1: | |
logging.warning(f"Multiple output files found in S3 output location. Downloaded the first: '{s3_output_key}'. Other files exist.") | |
except Exception as e: | |
logging.error(f"Failed to download or process Textract output from S3: {e}") | |
raise | |
return downloaded_file_path | |
# --- Example Usage --- | |
if __name__ == '__main__': | |
# --- Configuration --- (Replace with your actual values) | |
MY_LOCAL_PDF = r"C:\path\to\your\document.pdf" # Use raw string for Windows paths | |
MY_S3_BUCKET = "your-textract-demo-bucket-name" # MUST BE UNIQUE GLOBALLY | |
MY_S3_INPUT_PREFIX = "textract-inputs" # Folder in the bucket for uploads | |
MY_S3_OUTPUT_PREFIX = "textract-outputs" # Folder in the bucket for results | |
MY_LOCAL_OUTPUT_DIR = "./textract_results" # Local folder to save JSON | |
MY_AWS_REGION = "us-east-1" # e.g., 'us-east-1', 'eu-west-1' | |
# --- Create a dummy PDF for testing if you don't have one --- | |
# Requires 'reportlab' library: pip install reportlab | |
try: | |
from reportlab.pdfgen import canvas | |
from reportlab.lib.pagesizes import letter | |
if not os.path.exists(MY_LOCAL_PDF): | |
print(f"Creating dummy PDF: {MY_LOCAL_PDF}") | |
c = canvas.Canvas(MY_LOCAL_PDF, pagesize=letter) | |
c.drawString(100, 750, "This is a test document for AWS Textract.") | |
c.drawString(100, 700, "It includes some text and a placeholder for a signature.") | |
c.drawString(100, 650, "Signed:") | |
# Draw a simple line/scribble for signature placeholder | |
c.line(150, 630, 250, 645) | |
c.line(250, 645, 300, 620) | |
c.save() | |
print("Dummy PDF created.") | |
except ImportError: | |
if not os.path.exists(MY_LOCAL_PDF): | |
print(f"Warning: reportlab not installed and '{MY_LOCAL_PDF}' not found. Cannot run example without an input PDF.") | |
exit() # Exit if no PDF available for the example | |
except Exception as e: | |
print(f"Error creating dummy PDF: {e}") | |
exit() | |
# --- Run the analysis --- | |
try: | |
output_json_path = analyze_pdf_with_textract( | |
local_pdf_path=MY_LOCAL_PDF, | |
s3_bucket_name=MY_S3_BUCKET, | |
s3_input_prefix=MY_S3_INPUT_PREFIX, | |
s3_output_prefix=MY_S3_OUTPUT_PREFIX, | |
local_output_dir=MY_LOCAL_OUTPUT_DIR, | |
aws_region=MY_AWS_REGION | |
) | |
if output_json_path: | |
print(f"\n--- Analysis Complete ---") | |
print(f"Textract output JSON saved to: {output_json_path}") | |
# Optional: Load and print some info from the JSON | |
with open(output_json_path, 'r') as f: | |
results = json.load(f) | |
print(f"Detected {results.get('DocumentMetadata', {}).get('Pages', 'N/A')} page(s).") | |
# Find signature blocks (Note: This is basic, real parsing might be more complex) | |
signature_blocks = [block for block in results.get('Blocks', []) if block.get('BlockType') == 'SIGNATURE'] | |
print(f"Found {len(signature_blocks)} potential signature block(s).") | |
if signature_blocks: | |
print(f"First signature confidence: {signature_blocks[0].get('Confidence', 'N/A')}") | |
except FileNotFoundError as e: | |
print(f"\nError: Input file not found. {e}") | |
except Exception as e: | |
print(f"\nAn error occurred during the process: {e}") | |
import boto3 | |
import time | |
import os | |
def download_textract_output(job_id, output_bucket, output_prefix, local_folder): | |
""" | |
Checks the status of a Textract job and downloads the output ZIP file if the job is complete. | |
:param job_id: The Textract job ID. | |
:param output_bucket: The S3 bucket where the output is stored. | |
:param output_prefix: The prefix (folder path) in S3 where the output file is stored. | |
:param local_folder: The local directory where the ZIP file should be saved. | |
""" | |
textract_client = boto3.client('textract') | |
s3_client = boto3.client('s3') | |
# Check job status | |
while True: | |
response = textract_client.get_document_analysis(JobId=job_id) | |
status = response['JobStatus'] | |
if status == 'SUCCEEDED': | |
print("Job completed successfully.") | |
break | |
elif status == 'FAILED': | |
print("Job failed:", response.get("StatusMessage", "No error message provided.")) | |
return | |
else: | |
print(f"Job is still {status}, waiting...") | |
time.sleep(10) # Wait before checking again | |
# Find output ZIP file in S3 | |
output_file_key = f"{output_prefix}/{job_id}.zip" | |
local_file_path = os.path.join(local_folder, f"{job_id}.zip") | |
# Download file | |
try: | |
s3_client.download_file(output_bucket, output_file_key, local_file_path) | |
print(f"Output file downloaded to: {local_file_path}") | |
except Exception as e: | |
print(f"Error downloading file: {e}") | |
# Example usage: | |
# download_textract_output("your-job-id", "your-output-bucket", "your-output-prefix", "/path/to/local/folder") | |