import os import socket # By default TLDExtract will try to pull files from the internet. I have instead downloaded this file locally to avoid the requirement for an internet connection. os.environ['TLDEXTRACT_CACHE'] = 'tld/.tld_set_snapshot' from tools.helper_functions import ensure_output_folder_exists, add_folder_to_path, put_columns_in_df, get_connection_params, output_folder, get_or_create_env_var, reveal_feedback_buttons, wipe_logs from tools.aws_functions import upload_file_to_s3 from tools.file_redaction import choose_and_run_redactor from tools.file_conversion import prepare_image_or_text_pdf from tools.data_anonymise import anonymise_data_files from tools.auth import authenticate_user #from tools.aws_functions import load_data_from_aws import gradio as gr from datetime import datetime today_rev = datetime.now().strftime("%Y%m%d") add_folder_to_path("tesseract/") add_folder_to_path("poppler/poppler-24.02.0/Library/bin/") ensure_output_folder_exists() chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE"] full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS'] language = 'en' host_name = socket.gethostname() feedback_logs_folder = 'feedback/' + today_rev + '/' + host_name + '/' access_logs_folder = 'logs/' + today_rev + '/' + host_name + '/' usage_logs_folder = 'usage/' + today_rev + '/' + host_name + '/' # Create the gradio interface app = gr.Blocks(theme = gr.themes.Base()) with app: prepared_pdf_state = gr.State([]) output_image_files_state = gr.State([]) output_file_list_state = gr.State([]) text_output_file_list_state = gr.State([]) log_files_output_list_state = gr.State([]) first_loop_state = gr.State(True) second_loop_state = gr.State(False) session_hash_state = gr.State() s3_output_folder_state = gr.State() # Logging state feedback_logs_state = gr.State(feedback_logs_folder + 'log.csv') feedback_s3_logs_loc_state = gr.State(feedback_logs_folder) access_logs_state = gr.State(access_logs_folder + 'log.csv') access_s3_logs_loc_state = gr.State(access_logs_folder) usage_logs_state = gr.State(usage_logs_folder + 'log.csv') usage_s3_logs_loc_state = gr.State(usage_logs_folder) gr.Markdown( """ # Document redaction Redact personal information from documents, open text, or xlsx/csv tabular data. See the 'Redaction settings' to change various settings such as which types of information to redact (e.g. people, places), or terms to exclude from redaction. If you are getting 0 redactions, it's possible that the text in the document is saved in image format instead of as selectable text. Select 'Image analysis' on the Settings page in this case. WARNING: In testing the app seems to only find about 60% of personal information on a given (typed) page of text. It is essential that all outputs are checked **by a human** to ensure that all personal information has been removed. This app accepts a maximum file size of 10mb. Please consider giving feedback for the quality of the answers underneath the redact buttons when the option appears, this will help to improve the app. """) with gr.Tab("PDFs/images"): with gr.Accordion("Redact document", open = True): in_file = gr.File(label="Choose document/image files (PDF, JPG, PNG)", file_count= "multiple", file_types=['.pdf', '.jpg', '.png']) redact_btn = gr.Button("Redact document(s)", variant="primary") with gr.Row(): output_summary = gr.Textbox(label="Output summary") output_file = gr.File(label="Output files") text_documents_done = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False) with gr.Row(): convert_text_pdf_to_img_btn = gr.Button(value="Convert pdf to image-based pdf to apply redactions", variant="secondary", visible=False) pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False) pdf_feedback_radio = gr.Radio(choices=["The results were good", "The results were not good"], visible=False) pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False) pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False) with gr.Row(): s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False) # This keeps track of the time taken to redact files for logging purposes. estimated_time_taken_number = gr.Number(value=0.0, precision=1, visible=False) with gr.Tab(label="Open text or Excel/csv files"): gr.Markdown( """ ### Choose open text or a tabular data file (xlsx or csv) to redact. """ ) with gr.Accordion("Paste open text", open = False): in_text = gr.Textbox(label="Enter open text", lines=10) with gr.Accordion("Upload xlsx or csv files", open = True): in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz']) in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True) in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).") tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary") with gr.Row(): text_output_summary = gr.Textbox(label="Output result") text_output_file = gr.File(label="Output files") text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False) data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False) data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.", choices=["The results were good", "The results were not good"], visible=False) data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False) data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False) with gr.Tab(label="Redaction settings"): gr.Markdown( """ Define redaction settings that affect both document and open text redaction. """) with gr.Accordion("Settings for documents", open = True): in_redaction_method = gr.Radio(label="Default document redaction method - text analysis is faster is not useful for image-based PDFs. Imaged-based is slightly less accurate in general.", value = "Text analysis", choices=["Text analysis", "Image analysis"]) with gr.Row(): page_min = gr.Number(precision=0,minimum=0,maximum=9999, label="Lowest page to redact") page_max = gr.Number(precision=0,minimum=0,maximum=9999, label="Highest page to redact") with gr.Accordion("Settings for open text or xlsx/csv files", open = True): anon_strat = gr.Radio(choices=["replace with ", "replace with ", "redact", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace with ") with gr.Accordion("Settings for documents and open text/xlsx/csv files", open = True): in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Entities to redact (click close to down arrow for full list)") with gr.Row(): in_redact_language = gr.Dropdown(value = "en", choices = ["en"], label="Redaction language (only English currently supported)", multiselect=False) in_allow_list = gr.Dataframe(label="Allow list - enter a new term to ignore for redaction on each row e.g. Lambeth -> add new row -> Lambeth 2030", headers=["Allow list"], row_count=1, col_count=(1, 'fixed'), value=[[""]], type="array", column_widths=["100px"], datatype='str') log_files_output = gr.File(label="Log file output", interactive=False) # Invisible text box to hold the session hash/username just for logging purposes session_hash_textbox = gr.Textbox(value="", visible=False) # AWS options - placeholder for possibility of storing data on s3 # with gr.Tab(label="Advanced options"): # with gr.Accordion(label = "AWS data access", open = True): # aws_password_box = gr.Textbox(label="Password for AWS data access (ask the Data team if you don't have this)") # with gr.Row(): # in_aws_file = gr.Dropdown(label="Choose file to load from AWS (only valid for API Gateway app)", choices=["None", "Lambeth borough plan"]) # load_aws_data_button = gr.Button(value="Load data from AWS", variant="secondary") # aws_log_box = gr.Textbox(label="AWS data load status") # ### Loading AWS data ### # load_aws_data_button.click(fn=load_data_from_aws, inputs=[in_aws_file, aws_password_box], outputs=[in_file, aws_log_box]) # Document redaction redact_btn.click(fn = prepare_image_or_text_pdf, inputs=[in_file, in_redaction_method, in_allow_list, text_documents_done, output_summary, first_loop_state], outputs=[output_summary, prepared_pdf_state], api_name="prepare").\ then(fn = choose_and_run_redactor, inputs=[in_file, prepared_pdf_state, in_redact_language, in_redact_entities, in_redaction_method, in_allow_list, text_documents_done, output_summary, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, estimated_time_taken_number], outputs=[output_summary, output_file, output_file_list_state, text_documents_done, log_files_output, log_files_output_list_state, estimated_time_taken_number], api_name="redact_doc") # If the output file count text box changes, keep going with redacting each document until done text_documents_done.change(fn = prepare_image_or_text_pdf, inputs=[in_file, in_redaction_method, in_allow_list, text_documents_done, output_summary, second_loop_state], outputs=[output_summary, prepared_pdf_state]).\ then(fn = choose_and_run_redactor, inputs=[in_file, prepared_pdf_state, in_redact_language, in_redact_entities, in_redaction_method, in_allow_list, text_documents_done, output_summary, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, estimated_time_taken_number], outputs=[output_summary, output_file, output_file_list_state, text_documents_done, log_files_output, log_files_output_list_state, estimated_time_taken_number]).\ then(fn = reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title]) # Tabular data redaction in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]) tabular_data_redact_btn.click(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state], api_name="redact_text") # If the output file count text box changes, keep going with redacting each data file until done text_tabular_files_done.change(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state]).\ then(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title]) # Get connection details on app load app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state, session_hash_textbox]) # Log usernames and times of access to file (to know who is using the app when running on AWS) access_callback = gr.CSVLogger() access_callback.setup([session_hash_textbox], access_logs_folder) session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\ then(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox]) # User submitted feedback for pdf redactions pdf_callback = gr.CSVLogger() pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, in_file], feedback_logs_folder) pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args)), [pdf_feedback_radio, pdf_further_details_text, in_file], None, preprocess=False).\ then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text]) # User submitted feedback for data redactions data_callback = gr.CSVLogger() data_callback.setup([data_feedback_radio, data_further_details_text, in_data_files], feedback_logs_folder) data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, in_data_files], None, preprocess=False).\ then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text]) # Log processing time/token usage when making a query usage_callback = gr.CSVLogger() usage_callback.setup([session_hash_textbox, in_data_files, estimated_time_taken_number], usage_logs_folder) estimated_time_taken_number.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, in_data_files, estimated_time_taken_number], None, preprocess=False).\ then(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox]) # Launch the Gradio app COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0') print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}') if __name__ == "__main__": if os.environ['COGNITO_AUTH'] == "1": app.queue().launch(show_error=True, auth=authenticate_user, max_file_size='50mb') else: app.queue().launch(show_error=True, inbrowser=True, max_file_size='50mb')