import os import re import gradio as gr import pandas as pd import unicodedata from gradio_image_annotation import image_annotator def reset_state_vars(): return [], [], pd.DataFrame(), pd.DataFrame(), 0, "", image_annotator( label="Modify redaction boxes", label_list=["Redaction"], label_colors=[(0, 0, 0)], show_label=False, sources=None,#["upload"], show_clear_button=False, show_share_button=False, show_remove_button=False, interactive=False ) def get_or_create_env_var(var_name, default_value): # Get the environment variable if it exists value = os.environ.get(var_name) # If it doesn't exist, set it to the default value if value is None: os.environ[var_name] = default_value value = default_value return value # Names for options labels text_ocr_option = "Simple text analysis - docs with selectable text" tesseract_ocr_option = "OCR analysis for documents without selectable text - best for typed text" textract_option = "Complex image analysis - docs with handwriting/signatures (AWS Textract)" local_pii_detector = "Local" aws_pii_detector = "AWS Comprehend" # Retrieving or setting output folder env_var_name = 'GRADIO_OUTPUT_FOLDER' default_value = 'output/' output_folder = get_or_create_env_var(env_var_name, default_value) print(f'The value of {env_var_name} is {output_folder}') def load_in_default_allow_list(allow_list_file_path): if isinstance(allow_list_file_path, str): allow_list_file_path = [allow_list_file_path] return allow_list_file_path def get_file_path_end(file_path): # First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt") basename = os.path.basename(file_path) # Then, split the basename and its extension and return only the basename without the extension filename_without_extension, _ = os.path.splitext(basename) #print(filename_without_extension) return filename_without_extension def detect_file_type(filename): """Detect the file type based on its extension.""" if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')): return 'csv' elif filename.endswith('.xlsx'): return 'xlsx' elif filename.endswith('.parquet'): return 'parquet' elif filename.endswith('.pdf'): return 'pdf' elif filename.endswith('.jpg'): return 'jpg' elif filename.endswith('.jpeg'): return 'jpeg' elif filename.endswith('.png'): return 'png' else: raise ValueError("Unsupported file type.") def read_file(filename): """Read the file based on its detected type.""" file_type = detect_file_type(filename) if file_type == 'csv': return pd.read_csv(filename, low_memory=False) elif file_type == 'xlsx': return pd.read_excel(filename) elif file_type == 'parquet': return pd.read_parquet(filename) def ensure_output_folder_exists(): """Checks if the 'output/' folder exists, creates it if not.""" folder_name = "output/" if not os.path.exists(folder_name): # Create the folder if it doesn't exist os.makedirs(folder_name) print(f"Created the 'output/' folder.") else: print(f"The 'output/' folder already exists.") def custom_regex_load(in_file): ''' When file is loaded, update the column dropdown choices and write to relevant data states. ''' custom_regex = pd.DataFrame() if in_file: file_list = [string.name for string in in_file] regex_file_names = [string for string in file_list if "csv" in string.lower()] if regex_file_names: regex_file_name = regex_file_names[0] custom_regex = pd.read_csv(regex_file_name, low_memory=False, header=None) #regex_file_name_no_ext = get_file_path_end(regex_file_name) output_text = "Allow list file loaded." print(output_text) else: error = "No allow list file provided." print(error) output_text = error return error, custom_regex return output_text, custom_regex def put_columns_in_df(in_file): new_choices = [] concat_choices = [] all_sheet_names = [] number_of_excel_files = 0 for file in in_file: file_name = file.name file_type = detect_file_type(file_name) print("File type is:", file_type) if file_type == 'xlsx': number_of_excel_files += 1 new_choices = [] print("Running through all xlsx sheets") anon_xlsx = pd.ExcelFile(file_name) new_sheet_names = anon_xlsx.sheet_names # Iterate through the sheet names for sheet_name in new_sheet_names: # Read each sheet into a DataFrame df = pd.read_excel(file_name, sheet_name=sheet_name) # Process the DataFrame (e.g., print its contents) print(f"Sheet Name: {sheet_name}") print(df.head()) # Print the first few rows new_choices.extend(list(df.columns)) all_sheet_names.extend(new_sheet_names) else: df = read_file(file_name) new_choices = list(df.columns) concat_choices.extend(new_choices) # Drop duplicate columns concat_choices = list(set(concat_choices)) if number_of_excel_files > 0: return gr.Dropdown(choices=concat_choices, value=concat_choices), gr.Dropdown(choices=all_sheet_names, value=all_sheet_names, visible=True) else: return gr.Dropdown(choices=concat_choices, value=concat_choices), gr.Dropdown(visible=False) # Following function is only relevant for locally-created executable files based on this app (when using pyinstaller it creates a _internal folder that contains tesseract and poppler. These need to be added to the system path to enable the app to run) def add_folder_to_path(folder_path: str): ''' Check if a folder exists on your system. If so, get the absolute path and then add it to the system Path variable if it doesn't already exist. ''' if os.path.exists(folder_path) and os.path.isdir(folder_path): print(folder_path, "folder exists.") # Resolve relative path to absolute path absolute_path = os.path.abspath(folder_path) current_path = os.environ['PATH'] if absolute_path not in current_path.split(os.pathsep): full_path_extension = absolute_path + os.pathsep + current_path os.environ['PATH'] = full_path_extension #print(f"Updated PATH with: ", full_path_extension) else: print(f"Directory {folder_path} already exists in PATH.") else: print(f"Folder not found at {folder_path} - not added to PATH") # Upon running a process, the feedback buttons are revealed def reveal_feedback_buttons(): return gr.Radio(visible=True, label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document."), gr.Textbox(visible=True), gr.Button(visible=True), gr.Markdown(visible=True) def wipe_logs(feedback_logs_loc, usage_logs_loc): try: os.remove(feedback_logs_loc) except Exception as e: print("Could not remove feedback logs file", e) try: os.remove(usage_logs_loc) except Exception as e: print("Could not remove usage logs file", e) async def get_connection_params(request: gr.Request): base_folder = "" #print("request user:", request.username) #request_data = await request.json() # Parse JSON body #print("All request data:", request_data) #context_value = request_data.get('context') #if 'context' in request_data: # print("Request context dictionary:", request_data['context']) # print("Request headers dictionary:", request.headers) # print("All host elements", request.client) # print("IP address:", request.client.host) # print("Query parameters:", dict(request.query_params)) # To get the underlying FastAPI items you would need to use await and some fancy @ stuff for a live query: https://fastapi.tiangolo.com/vi/reference/request/ #print("Request dictionary to object:", request.request.body()) print("Session hash:", request.session_hash) # Retrieving or setting CUSTOM_CLOUDFRONT_HEADER CUSTOM_CLOUDFRONT_HEADER_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER', '') #print(f'The value of CUSTOM_CLOUDFRONT_HEADER is {CUSTOM_CLOUDFRONT_HEADER_var}') # Retrieving or setting CUSTOM_CLOUDFRONT_HEADER_VALUE CUSTOM_CLOUDFRONT_HEADER_VALUE_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER_VALUE', '') #print(f'The value of CUSTOM_CLOUDFRONT_HEADER_VALUE_var is {CUSTOM_CLOUDFRONT_HEADER_VALUE_var}') if CUSTOM_CLOUDFRONT_HEADER_var and CUSTOM_CLOUDFRONT_HEADER_VALUE_var: if CUSTOM_CLOUDFRONT_HEADER_var in request.headers: supplied_cloudfront_custom_value = request.headers[CUSTOM_CLOUDFRONT_HEADER_var] if supplied_cloudfront_custom_value == CUSTOM_CLOUDFRONT_HEADER_VALUE_var: print("Custom Cloudfront header found:", supplied_cloudfront_custom_value) else: raise(ValueError, "Custom Cloudfront header value does not match expected value.") # Get output save folder from 1 - username passed in from direct Cognito login, 2 - Cognito ID header passed through a Lambda authenticator, 3 - the session hash. if request.username: out_session_hash = request.username base_folder = "user-files/" print("Request username found:", out_session_hash) elif 'x-cognito-id' in request.headers: out_session_hash = request.headers['x-cognito-id'] base_folder = "user-files/" print("Cognito ID found:", out_session_hash) else: out_session_hash = request.session_hash base_folder = "temp-files/" # print("Cognito ID not found. Using session hash as save folder:", out_session_hash) output_folder = base_folder + out_session_hash + "/" #if bucket_name: # print("S3 output folder is: " + "s3://" + bucket_name + "/" + output_folder) return out_session_hash, output_folder, out_session_hash def clean_unicode_text(text): # Step 1: Normalize unicode characters to decompose any special forms normalized_text = unicodedata.normalize('NFKC', text) # Step 2: Replace smart quotes and special punctuation with standard ASCII equivalents replacements = { '‘': "'", '’': "'", '“': '"', '”': '"', '–': '-', '—': '-', '…': '...', '•': '*', } # Perform replacements for old_char, new_char in replacements.items(): normalized_text = normalized_text.replace(old_char, new_char) # Step 3: Optionally remove non-ASCII characters if needed # This regex removes any remaining non-ASCII characters, if desired. # Comment this line if you want to keep all Unicode characters. cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text) return cleaned_text