Spaces:
Running
Running
seanpedrickcase
commited on
Commit
·
3809dc8
1
Parent(s):
9ad3bc3
Dockerfile now loads models to local folder. Can use custom output folder. requrirements for GPU-enabled summarisation now in separate file to hopefully avoid HF space issues.
Browse files- .dockerignore +7 -0
- .gitignore +5 -1
- Dockerfile +53 -17
- app.py +56 -32
- chatfuncs/chatfuncs.py +1 -1
- chatfuncs/helper_functions.py +30 -0
- chatfuncs/summarise_funcs.py +141 -124
- requirements.txt +2 -2
- requirements_gpu.txt +6 -0
.dockerignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.pyc
|
2 |
+
*.ipynb
|
3 |
+
*.csv
|
4 |
+
*.parquet
|
5 |
+
tests/*
|
6 |
+
output/*
|
7 |
+
model/*
|
.gitignore
CHANGED
@@ -1,3 +1,7 @@
|
|
1 |
*.pyc
|
2 |
*.ipynb
|
3 |
-
*.csv
|
|
|
|
|
|
|
|
|
|
1 |
*.pyc
|
2 |
*.ipynb
|
3 |
+
*.csv
|
4 |
+
*.parquet
|
5 |
+
tests/*
|
6 |
+
output/*
|
7 |
+
model/*
|
Dockerfile
CHANGED
@@ -1,30 +1,66 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
WORKDIR /src
|
4 |
|
5 |
COPY requirements.txt .
|
6 |
|
7 |
-
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
RUN
|
11 |
-
|
|
|
12 |
USER user
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
ENV HOME=/home/user \
|
15 |
-
|
16 |
PYTHONPATH=$HOME/app \
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
26 |
|
27 |
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
28 |
-
COPY --chown=user . $HOME/app
|
29 |
|
|
|
|
|
30 |
CMD ["python", "app.py"]
|
|
|
1 |
+
# First stage: build dependencies
|
2 |
+
FROM public.ecr.aws/docker/library/python:3.11.9-slim-bookworm
|
3 |
+
|
4 |
+
# Install Lambda web adapter
|
5 |
+
COPY --from=public.ecr.aws/awsguru/aws-lambda-adapter:0.8.3 /lambda-adapter /opt/extensions/lambda-adapter
|
6 |
+
|
7 |
+
# Install wget, git, curl
|
8 |
+
RUN apt-get update && \
|
9 |
+
apt-get install -y wget git curl && \
|
10 |
+
apt-get clean && rm -rf /var/lib/apt/lists/*
|
11 |
|
12 |
WORKDIR /src
|
13 |
|
14 |
COPY requirements.txt .
|
15 |
|
16 |
+
# Optimized dependency installation
|
17 |
+
RUN pip install --no-cache-dir -r requirements.txt && \
|
18 |
+
pip install --no-cache-dir gradio==4.36.0
|
19 |
|
20 |
+
# Create a directory for the models and switch to user
|
21 |
+
RUN mkdir /model && \
|
22 |
+
useradd -m -u 1000 user && \
|
23 |
+
chown -R user:user /model
|
24 |
USER user
|
25 |
+
|
26 |
+
WORKDIR /home/user
|
27 |
+
|
28 |
+
# Download the GGUF model to local model/phi directory:
|
29 |
+
ENV REPO_ID "QuantFactory/Phi-3-mini-128k-instruct-GGUF"
|
30 |
+
ENV MODEL_FILE "Phi-3-mini-128k-instruct.Q4_K_M.gguf"
|
31 |
+
|
32 |
+
RUN python -c "from huggingface_hub import hf_hub_download; \
|
33 |
+
hf_hub_download(repo_id='$REPO_ID', filename='$MODEL_FILE', local_dir='/model/phi')"
|
34 |
+
|
35 |
+
# Download the transformers-based models
|
36 |
+
RUN curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash && \
|
37 |
+
apt-get install -y git-lfs && \
|
38 |
+
git lfs install
|
39 |
+
|
40 |
+
RUN git clone https://huggingface.co/stacked-summaries/flan-t5-large-stacked-samsum-1024 /model/stacked_t5 && \
|
41 |
+
rm -rf /model/stacked_t5/.git && \
|
42 |
+
git clone https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary /model/long_t5 && \
|
43 |
+
rm -rf /model/long_t5/.git
|
44 |
+
|
45 |
+
|
46 |
ENV HOME=/home/user \
|
47 |
+
PATH=/home/user/.local/bin:$PATH \
|
48 |
PYTHONPATH=$HOME/app \
|
49 |
+
PYTHONUNBUFFERED=1 \
|
50 |
+
GRADIO_ALLOW_FLAGGING=never \
|
51 |
+
GRADIO_NUM_PORTS=1 \
|
52 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
53 |
+
GRADIO_SERVER_PORT=7860 \
|
54 |
+
GRADIO_THEME=huggingface \
|
55 |
+
SYSTEM=spaces
|
56 |
+
|
57 |
+
# Switch back to root to copy the app files
|
58 |
+
USER root
|
59 |
+
WORKDIR /home/user/app
|
60 |
|
61 |
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
62 |
+
COPY --chown=user . $HOME/user/app
|
63 |
|
64 |
+
# Switch back to the user to run the app
|
65 |
+
USER user
|
66 |
CMD ["python", "app.py"]
|
app.py
CHANGED
@@ -14,9 +14,11 @@ PandasDataFrame = Type[pd.DataFrame]
|
|
14 |
import chatfuncs.chatfuncs as chatf
|
15 |
import chatfuncs.summarise_funcs as sumf
|
16 |
|
17 |
-
from chatfuncs.helper_functions import dummy_function, put_columns_in_df
|
18 |
from chatfuncs.summarise_funcs import summarise_text
|
19 |
|
|
|
|
|
20 |
# Disable cuda devices if necessary
|
21 |
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
22 |
|
@@ -34,11 +36,28 @@ else:
|
|
34 |
|
35 |
print("Device used is: ", torch_device)
|
36 |
|
37 |
-
def create_hf_model(model_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
|
|
42 |
|
43 |
return summariser, tokenizer, model_name
|
44 |
|
@@ -53,7 +72,7 @@ def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_d
|
|
53 |
if torch_device is None:
|
54 |
torch_device = chatf.torch_device
|
55 |
|
56 |
-
if model_type == "Phi 3 128k (
|
57 |
if torch_device == "cuda":
|
58 |
gpu_config.update_gpu(gpu_layers)
|
59 |
print("Loading with", gpu_config.n_gpu_layers, "model layers sent to GPU.")
|
@@ -66,38 +85,43 @@ def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_d
|
|
66 |
print(vars(gpu_config))
|
67 |
print(vars(cpu_config))
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
try:
|
70 |
-
summariser = Llama(
|
71 |
-
model_path=hf_hub_download(
|
72 |
-
repo_id=os.environ.get("REPO_ID", "QuantFactory/Phi-3-mini-128k-instruct-GGUF"),# "QuantFactory/Phi-3-mini-128k-instruct-GGUF"), # "QuantFactory/Meta-Llama-3-8B-Instruct-GGUF-v2"), #"microsoft/Phi-3-mini-4k-instruct-gguf"),#"TheBloke/Mistral-7B-OpenOrca-GGUF"),
|
73 |
-
filename=os.environ.get("MODEL_FILE", "Phi-3-mini-128k-instruct.Q4_K_M.gguf") #"Phi-3-mini-128k-instruct.Q4_K_M.gguf") #"Meta-Llama-3-8B-Instruct-v2.Q6_K.gguf") #"Phi-3-mini-4k-instruct-q4.gguf")#"mistral-7b-openorca.Q4_K_M.gguf"),
|
74 |
-
),
|
75 |
-
**vars(gpu_config) # change n_gpu_layers if you have more or less VRAM
|
76 |
-
)
|
77 |
|
78 |
except Exception as e:
|
79 |
print("GPU load failed")
|
80 |
print(e)
|
81 |
-
summariser = Llama(
|
82 |
-
model_path=hf_hub_download(
|
83 |
-
repo_id=os.environ.get("REPO_ID", "QuantFactory/Phi-3-mini-128k-instruct-GGUF"), #"QuantFactory/Phi-3-mini-128k-instruct-GGUF"), #, "microsoft/Phi-3-mini-4k-instruct-gguf"),#"QuantFactory/Meta-Llama-3-8B-Instruct-GGUF-v2"), #"microsoft/Phi-3-mini-4k-instruct-gguf"),#"TheBloke/Mistral-7B-OpenOrca-GGUF"),
|
84 |
-
filename=os.environ.get("MODEL_FILE", "Phi-3-mini-128k-instruct.Q4_K_M.gguf"), # "Phi-3-mini-128k-instruct.Q4_K_M.gguf") # , #"Meta-Llama-3-8B-Instruct-v2.Q6_K.gguf") #"Phi-3-mini-4k-instruct-q4.gguf"),#"mistral-7b-openorca.Q4_K_M.gguf"),
|
85 |
-
),
|
86 |
-
**vars(cpu_config)
|
87 |
-
)
|
88 |
|
89 |
tokenizer = []
|
90 |
|
91 |
if model_type == "Flan T5 Large Stacked Samsum 1k":
|
92 |
# Huggingface chat model
|
93 |
-
hf_checkpoint = 'stacked-summaries/flan-t5-large-stacked-samsum-1024'
|
94 |
-
|
95 |
-
summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint)
|
96 |
|
97 |
if model_type == "Long T5 Global Base 16k Book Summary":
|
98 |
# Huggingface chat model
|
99 |
-
hf_checkpoint = 'pszemraj/long-t5-tglobal-base-16384-book-summary'
|
100 |
-
summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint)
|
101 |
|
102 |
sumf.model = summariser
|
103 |
sumf.tokenizer = tokenizer
|
@@ -109,7 +133,7 @@ def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_d
|
|
109 |
return model_type, load_confirmation, model_type
|
110 |
|
111 |
# Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
|
112 |
-
model_type = "Phi 3 128k (
|
113 |
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
|
114 |
|
115 |
model_type = "Flan T5 Large Stacked Samsum 1k"
|
@@ -133,7 +157,7 @@ with block:
|
|
133 |
gr.Markdown(
|
134 |
"""
|
135 |
# Text summariser
|
136 |
-
Enter open text below to get a summary. You can copy and paste text directly, or upload a file and specify the column that you want to summarise. The default small model will be able to summarise up to about
|
137 |
""")
|
138 |
|
139 |
with gr.Tab("Summariser"):
|
@@ -149,7 +173,7 @@ with block:
|
|
149 |
with gr.Row():
|
150 |
summarise_btn = gr.Button("Summarise", variant="primary")
|
151 |
stop = gr.Button(value="Interrupt processing", variant="secondary", scale=0)
|
152 |
-
length_slider = gr.Slider(minimum = 30, maximum =
|
153 |
|
154 |
with gr.Row():
|
155 |
output_single_text = gr.Textbox(label="Output example (first example in dataset)")
|
@@ -157,12 +181,12 @@ with block:
|
|
157 |
|
158 |
with gr.Tab("Advanced features"):
|
159 |
with gr.Row():
|
160 |
-
model_choice = gr.Radio(label="Choose a summariser model", value="Long T5 Global Base 16k Book Summary", choices = ["Long T5 Global Base 16k Book Summary", "Flan T5 Large Stacked Samsum 1k", "Phi 3 128k (
|
161 |
change_model_button = gr.Button(value="Load model", scale=0)
|
162 |
with gr.Accordion("Choose number of model layers to send to GPU (WARNING: please don't modify unless you are sure you have a GPU).", open = False):
|
163 |
gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU.", value=0, minimum=0, maximum=100, step = 1, visible=True)
|
164 |
with gr.Accordion("LLM parameters"):
|
165 |
-
temp_slide = gr.Slider(minimum=0.1, value = 0.5, maximum=1, step=0.1, label="Choose temperature setting for response generation.")
|
166 |
|
167 |
load_text = gr.Text(label="Load status")
|
168 |
|
@@ -172,7 +196,7 @@ with block:
|
|
172 |
change_model_button.click(fn=load_model, inputs=[model_choice, gpu_layer_choice], outputs = [model_type_state, load_text, current_model])
|
173 |
|
174 |
summarise_click = summarise_btn.click(fn=summarise_text, inputs=[in_text, data_state, length_slider, in_colname, model_type_state],
|
175 |
-
outputs=[output_single_text, output_file], api_name="
|
176 |
# summarise_enter = summarise_btn.submit(fn=summarise_text, inputs=[in_text, data_state, length_slider, in_colname, model_type_state],
|
177 |
# outputs=[output_single_text, output_file])
|
178 |
|
@@ -184,7 +208,7 @@ with block:
|
|
184 |
# Dummy function to allow dropdown modification to work correctly (strange thing needed for Gradio 3.50, will be deprecated upon upgrading Gradio version)
|
185 |
in_colname.change(dummy_function, in_colname, None)
|
186 |
|
187 |
-
block.queue().launch()
|
188 |
|
189 |
# def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None):
|
190 |
# print("Loading model ", model_type)
|
@@ -197,7 +221,7 @@ block.queue().launch()
|
|
197 |
# if torch_device is None:
|
198 |
# torch_device = chatf.torch_device
|
199 |
|
200 |
-
# if model_type == "Phi 3 128k (
|
201 |
# hf_checkpoint = 'NousResearch/Nous-Capybara-7B-V1.9-GGUF'
|
202 |
|
203 |
# if torch_device == "cuda":
|
|
|
14 |
import chatfuncs.chatfuncs as chatf
|
15 |
import chatfuncs.summarise_funcs as sumf
|
16 |
|
17 |
+
from chatfuncs.helper_functions import dummy_function, put_columns_in_df, output_folder, ensure_output_folder_exists
|
18 |
from chatfuncs.summarise_funcs import summarise_text
|
19 |
|
20 |
+
ensure_output_folder_exists(output_folder)
|
21 |
+
|
22 |
# Disable cuda devices if necessary
|
23 |
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
24 |
|
|
|
36 |
|
37 |
print("Device used is: ", torch_device)
|
38 |
|
39 |
+
def create_hf_model(model_name, local_model_dir="model/t5_long"):
|
40 |
+
|
41 |
+
# Construct the expected local model path
|
42 |
+
local_model_path = os.path.join(local_model_dir, model_name)
|
43 |
+
|
44 |
+
# Check if the model directory exists
|
45 |
+
if os.path.exists(local_model_path):
|
46 |
+
print(f"Model '{model_name}' found locally at: {local_model_path}")
|
47 |
+
|
48 |
+
# Load tokenizer and pipeline from local path
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(local_model_path, model_max_length=chatf.context_length)
|
50 |
+
summariser = pipeline("summarization", model=local_model_path, tokenizer=tokenizer)
|
51 |
|
52 |
+
else:
|
53 |
+
print(f"Downloading model '{model_name}' from Hugging Face Hub...")
|
54 |
+
|
55 |
+
# Download tokenizer and pipeline from Hugging Face Hub
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length=chatf.context_length)
|
57 |
+
summariser = pipeline("summarization", model=model_name, tokenizer=tokenizer)
|
58 |
|
59 |
+
# Save the model locally (optional, but recommended for future use)
|
60 |
+
#summariser.save_pretrained(local_model_path)
|
61 |
|
62 |
return summariser, tokenizer, model_name
|
63 |
|
|
|
72 |
if torch_device is None:
|
73 |
torch_device = chatf.torch_device
|
74 |
|
75 |
+
if model_type == "Phi 3 128k (24k tokens max)":
|
76 |
if torch_device == "cuda":
|
77 |
gpu_config.update_gpu(gpu_layers)
|
78 |
print("Loading with", gpu_config.n_gpu_layers, "model layers sent to GPU.")
|
|
|
85 |
print(vars(gpu_config))
|
86 |
print(vars(cpu_config))
|
87 |
|
88 |
+
def get_model_path():
|
89 |
+
repo_id = os.environ.get("REPO_ID", "QuantFactory/Phi-3-mini-128k-instruct-GGUF")
|
90 |
+
filename = os.environ.get("MODEL_FILE", "Phi-3-mini-128k-instruct.Q4_K_M.gguf")
|
91 |
+
model_dir = "model/phi" # Assuming this is your intended directory
|
92 |
+
|
93 |
+
# Construct the expected local path
|
94 |
+
local_path = os.path.join(model_dir, filename)
|
95 |
+
|
96 |
+
if os.path.exists(local_path):
|
97 |
+
print(f"Model already exists at: {local_path}")
|
98 |
+
return local_path
|
99 |
+
else:
|
100 |
+
print(f"Checking default Hugging Face folder. Downloading model from Hugging Face Hub if not found")
|
101 |
+
return hf_hub_download(repo_id=repo_id, filename=filename)
|
102 |
+
|
103 |
+
model_path = get_model_path()
|
104 |
+
|
105 |
+
|
106 |
try:
|
107 |
+
summariser = Llama(model_path=model_path, **vars(gpu_config))
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
except Exception as e:
|
110 |
print("GPU load failed")
|
111 |
print(e)
|
112 |
+
summariser = Llama(model_path=model_path, **vars(cpu_config))
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
tokenizer = []
|
115 |
|
116 |
if model_type == "Flan T5 Large Stacked Samsum 1k":
|
117 |
# Huggingface chat model
|
118 |
+
hf_checkpoint = 'stacked-summaries/flan-t5-large-stacked-samsum-1024'
|
119 |
+
summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint, local_model_dir="model/t5_stacked")
|
|
|
120 |
|
121 |
if model_type == "Long T5 Global Base 16k Book Summary":
|
122 |
# Huggingface chat model
|
123 |
+
hf_checkpoint = 'pszemraj/long-t5-tglobal-base-16384-book-summary'
|
124 |
+
summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint, local_model_dir="model/t5_long")
|
125 |
|
126 |
sumf.model = summariser
|
127 |
sumf.tokenizer = tokenizer
|
|
|
133 |
return model_type, load_confirmation, model_type
|
134 |
|
135 |
# Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
|
136 |
+
model_type = "Phi 3 128k (24k tokens max)"
|
137 |
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
|
138 |
|
139 |
model_type = "Flan T5 Large Stacked Samsum 1k"
|
|
|
157 |
gr.Markdown(
|
158 |
"""
|
159 |
# Text summariser
|
160 |
+
Enter open text below to get a summary. You can copy and paste text directly, or upload a file and specify the column that you want to summarise. The default small model will be able to summarise up to about 12,000 words, but the quality may not be great. The larger model around 800 words of better quality. Summarisation with Phi 3 128k works on up to around 20,000 words (suitable for a 12Gb graphics card without out of memory issues), and may give a higher quality summary, but will be slow, and it may not respect your desired maximum word count.
|
161 |
""")
|
162 |
|
163 |
with gr.Tab("Summariser"):
|
|
|
173 |
with gr.Row():
|
174 |
summarise_btn = gr.Button("Summarise", variant="primary")
|
175 |
stop = gr.Button(value="Interrupt processing", variant="secondary", scale=0)
|
176 |
+
length_slider = gr.Slider(minimum = 30, maximum = 1000, value = 500, step = 10, label = "Maximum length of summary (in words)")
|
177 |
|
178 |
with gr.Row():
|
179 |
output_single_text = gr.Textbox(label="Output example (first example in dataset)")
|
|
|
181 |
|
182 |
with gr.Tab("Advanced features"):
|
183 |
with gr.Row():
|
184 |
+
model_choice = gr.Radio(label="Choose a summariser model", value="Long T5 Global Base 16k Book Summary", choices = ["Long T5 Global Base 16k Book Summary", "Flan T5 Large Stacked Samsum 1k", "Phi 3 128k (24k tokens max)"])
|
185 |
change_model_button = gr.Button(value="Load model", scale=0)
|
186 |
with gr.Accordion("Choose number of model layers to send to GPU (WARNING: please don't modify unless you are sure you have a GPU).", open = False):
|
187 |
gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU.", value=0, minimum=0, maximum=100, step = 1, visible=True)
|
188 |
with gr.Accordion("LLM parameters"):
|
189 |
+
temp_slide = gr.Slider(minimum=0.1, value = 0.5, maximum=1, step=0.1, label="Choose temperature setting for response generation.", interactive=True)
|
190 |
|
191 |
load_text = gr.Text(label="Load status")
|
192 |
|
|
|
196 |
change_model_button.click(fn=load_model, inputs=[model_choice, gpu_layer_choice], outputs = [model_type_state, load_text, current_model])
|
197 |
|
198 |
summarise_click = summarise_btn.click(fn=summarise_text, inputs=[in_text, data_state, length_slider, in_colname, model_type_state],
|
199 |
+
outputs=[output_single_text, output_file], api_name="summarise")
|
200 |
# summarise_enter = summarise_btn.submit(fn=summarise_text, inputs=[in_text, data_state, length_slider, in_colname, model_type_state],
|
201 |
# outputs=[output_single_text, output_file])
|
202 |
|
|
|
208 |
# Dummy function to allow dropdown modification to work correctly (strange thing needed for Gradio 3.50, will be deprecated upon upgrading Gradio version)
|
209 |
in_colname.change(dummy_function, in_colname, None)
|
210 |
|
211 |
+
block.queue().launch(show_error=True)
|
212 |
|
213 |
# def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None):
|
214 |
# print("Loading model ", model_type)
|
|
|
221 |
# if torch_device is None:
|
222 |
# torch_device = chatf.torch_device
|
223 |
|
224 |
+
# if model_type == "Phi 3 128k (24k tokens max)":
|
225 |
# hf_checkpoint = 'NousResearch/Nous-Capybara-7B-V1.9-GGUF'
|
226 |
|
227 |
# if torch_device == "cuda":
|
chatfuncs/chatfuncs.py
CHANGED
@@ -52,7 +52,7 @@ class CtransInitConfig_gpu:
|
|
52 |
seed=seed,
|
53 |
n_threads=threads,
|
54 |
n_batch=batch_size,
|
55 |
-
n_ctx=
|
56 |
n_gpu_layers=gpu_layers):
|
57 |
|
58 |
self.last_n_tokens = last_n_tokens
|
|
|
52 |
seed=seed,
|
53 |
n_threads=threads,
|
54 |
n_batch=batch_size,
|
55 |
+
n_ctx=24576,
|
56 |
n_gpu_layers=gpu_layers):
|
57 |
|
58 |
self.last_n_tokens = last_n_tokens
|
chatfuncs/helper_functions.py
CHANGED
@@ -12,6 +12,36 @@ import getpass
|
|
12 |
import gzip
|
13 |
import pickle
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Attempt to delete content of gradio temp folder
|
16 |
def get_temp_folder_path():
|
17 |
username = getpass.getuser()
|
|
|
12 |
import gzip
|
13 |
import pickle
|
14 |
|
15 |
+
def get_or_create_env_var(var_name, default_value):
|
16 |
+
# Get the environment variable if it exists
|
17 |
+
value = os.environ.get(var_name)
|
18 |
+
|
19 |
+
# If it doesn't exist, set it to the default value
|
20 |
+
if value is None:
|
21 |
+
os.environ[var_name] = default_value
|
22 |
+
value = default_value
|
23 |
+
|
24 |
+
return value
|
25 |
+
|
26 |
+
# Retrieving or setting output folder
|
27 |
+
env_var_name = 'GRADIO_OUTPUT_FOLDER'
|
28 |
+
default_value = 'output/'
|
29 |
+
|
30 |
+
output_folder = get_or_create_env_var(env_var_name, default_value)
|
31 |
+
print(f'The value of {env_var_name} is {output_folder}')
|
32 |
+
|
33 |
+
def ensure_output_folder_exists(output_folder):
|
34 |
+
"""Checks if the output folder exists, creates it if not."""
|
35 |
+
|
36 |
+
folder_name = output_folder
|
37 |
+
|
38 |
+
if not os.path.exists(folder_name):
|
39 |
+
# Create the folder if it doesn't exist
|
40 |
+
os.makedirs(folder_name)
|
41 |
+
print(f"Created the output folder:", folder_name)
|
42 |
+
else:
|
43 |
+
print(f"The output folder already exists:", folder_name)
|
44 |
+
|
45 |
# Attempt to delete content of gradio temp folder
|
46 |
def get_temp_folder_path():
|
47 |
username = getpass.getuser()
|
chatfuncs/summarise_funcs.py
CHANGED
@@ -3,158 +3,175 @@ import concurrent.futures
|
|
3 |
import gradio as gr
|
4 |
from chatfuncs.chatfuncs import model, CtransGenGenerationConfig, temperature
|
5 |
from datetime import datetime
|
|
|
|
|
|
|
6 |
|
7 |
today = datetime.now().strftime("%d%m%Y")
|
8 |
today_rev = datetime.now().strftime("%Y%m%d")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
if text_df.empty:
|
13 |
-
in_colname="text"
|
14 |
-
in_colname_list_first = in_colname
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
in_colname_list_first = in_colname
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
summarised_texts = []
|
28 |
|
29 |
-
|
30 |
|
31 |
-
|
|
|
32 |
|
33 |
-
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
|
41 |
-
|
42 |
|
43 |
-
|
44 |
|
45 |
-
|
46 |
|
47 |
-
|
48 |
-
gen_config.update_temp(temperature)
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
for single_text in progress.tqdm(texts_list, desc = "Summarising texts", unit = "texts"):
|
97 |
-
|
98 |
-
formatted_string = instruction_prompt_phi3.format(length=length, text=single_text)
|
99 |
-
|
100 |
-
# Use ThreadPoolExecutor to enforce a timeout
|
101 |
-
with concurrent.futures.ThreadPoolExecutor() as executor:
|
102 |
-
#future = executor.submit(call_model, formatted_string)#, **vars(gen_config))
|
103 |
-
future = executor.submit(call_model, formatted_string, gen_config)
|
104 |
-
try:
|
105 |
-
output = future.result(timeout=timeout_duration)
|
106 |
-
# Process the output here
|
107 |
-
except concurrent.futures.TimeoutError:
|
108 |
-
error_text = f"Timeout (five minutes) occurred for text: {single_text}. Consider using a smaller model."
|
109 |
-
print(error_text)
|
110 |
-
return error_text, None
|
111 |
-
|
112 |
-
print(output)
|
113 |
-
|
114 |
-
output_str = output['choices'][0]['text']
|
115 |
-
|
116 |
-
# Find the index of 'ASSISTANT: ' to select only text after this location
|
117 |
-
# index = output_str.find('ASSISTANT: ')
|
118 |
-
|
119 |
-
# # Check if 'ASSISTANT: ' is found in the string
|
120 |
-
# if index != -1:
|
121 |
-
# # Add the length of 'ASSISTANT: ' to the index to start from the end of this substring
|
122 |
-
# start_index = index + len('ASSISTANT: ')
|
123 |
-
|
124 |
-
# # Slice the string from this point to the end
|
125 |
-
# assistant_text = output_str[start_index:]
|
126 |
-
# else:
|
127 |
-
# assistant_text = "ASSISTANT: not found in text"
|
128 |
|
129 |
-
|
130 |
|
131 |
-
|
132 |
|
133 |
-
|
134 |
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
if
|
140 |
-
|
141 |
-
summarised_text_out = summarised_texts[0]#.values()
|
142 |
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
|
147 |
-
|
|
|
|
|
148 |
|
149 |
-
|
150 |
-
output_df = pd.DataFrame({"Original text":in_text_df[in_colname_list_first],
|
151 |
-
"Summarised text":summarised_text_out})
|
152 |
|
153 |
-
|
|
|
154 |
|
155 |
-
|
|
|
156 |
|
157 |
-
|
158 |
|
159 |
|
160 |
# def summarise_text(text, text_df, length_slider, in_colname, model_type, progress=gr.Progress()):
|
@@ -173,7 +190,7 @@ def summarise_text(text, text_df, length_slider, in_colname, model_type, progres
|
|
173 |
|
174 |
# texts_list = list(in_text_df[in_colname_list_first])
|
175 |
|
176 |
-
# if model_type != "Phi 3 128k (
|
177 |
# summarised_texts = []
|
178 |
|
179 |
# for single_text in progress.tqdm(texts_list, desc = "Summarising texts", unit = "texts"):
|
@@ -191,7 +208,7 @@ def summarise_text(text, text_df, length_slider, in_colname, model_type, progres
|
|
191 |
|
192 |
# #print(summarised_texts)
|
193 |
|
194 |
-
# if model_type == "Phi 3 128k (
|
195 |
|
196 |
|
197 |
# # Define a function that calls your model
|
@@ -248,10 +265,10 @@ def summarise_text(text, text_df, length_slider, in_colname, model_type, progres
|
|
248 |
# #pd.Series(summarised_texts).to_csv("summarised_texts_out.csv")
|
249 |
|
250 |
# if text_df.empty:
|
251 |
-
# #if model_type != "Phi 3 128k (
|
252 |
# summarised_text_out = summarised_texts[0]#.values()
|
253 |
|
254 |
-
# #if model_type == "Phi 3 128k (
|
255 |
# # summarised_text_out = summarised_texts[0]
|
256 |
|
257 |
# else:
|
|
|
3 |
import gradio as gr
|
4 |
from chatfuncs.chatfuncs import model, CtransGenGenerationConfig, temperature
|
5 |
from datetime import datetime
|
6 |
+
from typing import Type
|
7 |
+
|
8 |
+
from chatfuncs.helper_functions import output_folder
|
9 |
|
10 |
today = datetime.now().strftime("%d%m%Y")
|
11 |
today_rev = datetime.now().strftime("%Y%m%d")
|
12 |
|
13 |
+
PandasDataFrame = Type[pd.DataFrame]
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
def summarise_text(text:str, text_df:PandasDataFrame, length_slider:int, in_colname:str, model_type:str, progress=gr.Progress()):
|
16 |
+
'''
|
17 |
+
Summarise a text or series of texts using Transformers of Llama.cpp
|
18 |
+
'''
|
|
|
19 |
|
20 |
+
outputs = []
|
21 |
+
output_name = ""
|
22 |
+
output_name_parquet = ""
|
23 |
+
|
24 |
+
if text_df.empty:
|
25 |
+
in_colname="text"
|
26 |
+
in_colname_list_first = in_colname
|
27 |
|
28 |
+
in_text_df = pd.DataFrame({in_colname_list_first:[text]})
|
29 |
+
|
30 |
+
else:
|
31 |
+
in_text_df = text_df
|
32 |
+
in_colname_list_first = in_colname
|
33 |
|
34 |
+
print(model_type)
|
|
|
35 |
|
36 |
+
texts_list = list(in_text_df[in_colname_list_first])
|
37 |
|
38 |
+
if model_type != "Phi 3 128k (24k tokens max)":
|
39 |
+
summarised_texts = []
|
40 |
|
41 |
+
for single_text in progress.tqdm(texts_list, desc = "Summarising texts", unit = "texts"):
|
42 |
|
43 |
+
summarised_text = model(single_text, max_length=length_slider)
|
44 |
|
45 |
+
#print(summarised_text)
|
46 |
|
47 |
+
summarised_text_str = summarised_text[0]['summary_text']
|
48 |
|
49 |
+
summarised_texts.append(summarised_text_str)
|
50 |
|
51 |
+
print(summarised_text_str)
|
52 |
|
53 |
+
#pd.Series(summarised_texts).to_csv("summarised_texts_out.csv")
|
54 |
|
55 |
+
#print(summarised_texts)
|
|
|
56 |
|
57 |
+
if model_type == "Phi 3 128k (24k tokens max)":
|
58 |
|
59 |
+
gen_config = CtransGenGenerationConfig()
|
60 |
+
gen_config.update_temp(temperature)
|
61 |
+
|
62 |
+
print(gen_config)
|
63 |
+
|
64 |
+
# Define a function that calls your model
|
65 |
+
# def call_model(formatted_string):#, vars):
|
66 |
+
# return model(formatted_string)#, vars)
|
67 |
+
|
68 |
+
def call_model(formatted_string, gen_config):
|
69 |
+
"""
|
70 |
+
Calls your generation model with parameters from the CtransGenGenerationConfig object.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
formatted_string (str): The formatted input text for the model.
|
74 |
+
gen_config (CtransGenGenerationConfig): An object containing generation parameters.
|
75 |
+
"""
|
76 |
+
# Extracting parameters from the gen_config object
|
77 |
+
temperature = gen_config.temperature
|
78 |
+
top_k = gen_config.top_k
|
79 |
+
top_p = gen_config.top_p
|
80 |
+
repeat_penalty = gen_config.repeat_penalty
|
81 |
+
seed = gen_config.seed
|
82 |
+
max_tokens = gen_config.max_tokens
|
83 |
+
stream = gen_config.stream
|
84 |
+
|
85 |
+
# Now you can call your model directly, passing the parameters:
|
86 |
+
output = model(
|
87 |
+
formatted_string,
|
88 |
+
temperature=temperature,
|
89 |
+
top_k=top_k,
|
90 |
+
top_p=top_p,
|
91 |
+
repeat_penalty=repeat_penalty,
|
92 |
+
seed=seed,
|
93 |
+
max_tokens=max_tokens,
|
94 |
+
stream=stream,
|
95 |
+
)
|
96 |
+
|
97 |
+
return output
|
98 |
+
|
99 |
+
# Set your timeout duration (in seconds)
|
100 |
+
timeout_duration = 300 # Adjust this value as needed
|
101 |
+
|
102 |
+
length = str(length_slider)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
from chatfuncs.prompts import instruction_prompt_phi3
|
105 |
|
106 |
+
summarised_texts = []
|
107 |
|
108 |
+
for single_text in progress.tqdm(texts_list, desc = "Summarising texts", unit = "texts"):
|
109 |
|
110 |
+
formatted_string = instruction_prompt_phi3.format(length=length, text=single_text)
|
111 |
+
|
112 |
+
# Use ThreadPoolExecutor to enforce a timeout
|
113 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
114 |
+
#future = executor.submit(call_model, formatted_string)#, **vars(gen_config))
|
115 |
+
future = executor.submit(call_model, formatted_string, gen_config)
|
116 |
+
try:
|
117 |
+
output = future.result(timeout=timeout_duration)
|
118 |
+
# Process the output here
|
119 |
+
except concurrent.futures.TimeoutError:
|
120 |
+
error_text = f"Timeout (five minutes) occurred for text: {single_text}. Consider using a smaller model."
|
121 |
+
print(error_text)
|
122 |
+
return error_text, None
|
123 |
+
|
124 |
+
print(output)
|
125 |
+
|
126 |
+
output_str = output['choices'][0]['text']
|
127 |
+
|
128 |
+
# Find the index of 'ASSISTANT: ' to select only text after this location
|
129 |
+
# index = output_str.find('ASSISTANT: ')
|
130 |
+
|
131 |
+
# # Check if 'ASSISTANT: ' is found in the string
|
132 |
+
# if index != -1:
|
133 |
+
# # Add the length of 'ASSISTANT: ' to the index to start from the end of this substring
|
134 |
+
# start_index = index + len('ASSISTANT: ')
|
135 |
|
136 |
+
# # Slice the string from this point to the end
|
137 |
+
# assistant_text = output_str[start_index:]
|
138 |
+
# else:
|
139 |
+
# assistant_text = "ASSISTANT: not found in text"
|
140 |
+
|
141 |
+
# print(assistant_text)
|
142 |
+
|
143 |
+
#summarised_texts.append(assistant_text)
|
144 |
+
|
145 |
+
summarised_texts.append(output_str)
|
146 |
+
|
147 |
+
#print(summarised_text)
|
148 |
+
|
149 |
+
#pd.Series(summarised_texts).to_csv("summarised_texts_out.csv")
|
150 |
+
|
151 |
+
if text_df.empty:
|
152 |
+
#if model_type != "Phi 3 128k (24k tokens max)":
|
153 |
+
summarised_text_out = summarised_texts[0]#.values()
|
154 |
|
155 |
+
#if model_type == "Phi 3 128k (24k tokens max)":
|
156 |
+
# summarised_text_out = summarised_texts[0]
|
|
|
157 |
|
158 |
+
else:
|
159 |
+
summarised_text_out = summarised_texts #[d['summary_text'] for d in summarised_texts] #summarised_text[0].values()
|
160 |
|
161 |
+
output_name = output_folder + "summarise_output_" + today_rev + ".csv"
|
162 |
+
output_name_parquet = output_folder + "summarise_output_" + today_rev + ".parquet"
|
163 |
+
output_df = pd.DataFrame({"Original text":in_text_df[in_colname_list_first],
|
164 |
+
"Summarised text":summarised_text_out})
|
165 |
|
166 |
+
summarised_text_out_str = str(output_df["Summarised text"][0])#.str.replace("dict_values([","").str.replace("])",""))
|
|
|
|
|
167 |
|
168 |
+
output_df.to_csv(output_name, index = None)
|
169 |
+
output_df.to_parquet(output_name_parquet, index = None)
|
170 |
|
171 |
+
outputs.append(output_name)
|
172 |
+
outputs.append(output_name_parquet)
|
173 |
|
174 |
+
return summarised_text_out_str, outputs
|
175 |
|
176 |
|
177 |
# def summarise_text(text, text_df, length_slider, in_colname, model_type, progress=gr.Progress()):
|
|
|
190 |
|
191 |
# texts_list = list(in_text_df[in_colname_list_first])
|
192 |
|
193 |
+
# if model_type != "Phi 3 128k (24k tokens max)":
|
194 |
# summarised_texts = []
|
195 |
|
196 |
# for single_text in progress.tqdm(texts_list, desc = "Summarising texts", unit = "texts"):
|
|
|
208 |
|
209 |
# #print(summarised_texts)
|
210 |
|
211 |
+
# if model_type == "Phi 3 128k (24k tokens max)":
|
212 |
|
213 |
|
214 |
# # Define a function that calls your model
|
|
|
265 |
# #pd.Series(summarised_texts).to_csv("summarised_texts_out.csv")
|
266 |
|
267 |
# if text_df.empty:
|
268 |
+
# #if model_type != "Phi 3 128k (24k tokens max)":
|
269 |
# summarised_text_out = summarised_texts[0]#.values()
|
270 |
|
271 |
+
# #if model_type == "Phi 3 128k (24k tokens max)":
|
272 |
# # summarised_text_out = summarised_texts[0]
|
273 |
|
274 |
# else:
|
requirements.txt
CHANGED
@@ -2,5 +2,5 @@ gradio==4.36.0
|
|
2 |
transformers
|
3 |
pyarrow
|
4 |
openpyxl
|
5 |
-
llama-cpp-python==0.2.77
|
6 |
-
torch==2.3.1
|
|
|
2 |
transformers
|
3 |
pyarrow
|
4 |
openpyxl
|
5 |
+
llama-cpp-python==0.2.77
|
6 |
+
torch==2.3.1
|
requirements_gpu.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.36.0
|
2 |
+
transformers
|
3 |
+
pyarrow
|
4 |
+
openpyxl
|
5 |
+
llama-cpp-python==0.2.77 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121
|
6 |
+
torch==2.3.1 --extra-index-url https://download.pytorch.org/whl/cu121
|