Spaces:
Sleeping
Sleeping
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
# import seaborn as sns | |
import matplotlib.pyplot as plt | |
import torch | |
from diffusers import StableDiffusionXLPipeline | |
from typing import Optional, Union, Tuple, List, Callable, Dict | |
import numpy as np | |
import copy | |
import torch.nn.functional as F | |
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin | |
from diffusers.models.attention_processor import ( AttnProcessor2_0, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, XFormersAttnProcessor, ) | |
from diffusers.utils import ( logging, randn_tensor, replace_example_docstring, ) | |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput | |
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg | |
import os | |
logger = logging.get_logger(__name__) | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import StableDiffusionXLPipeline | |
>>> pipe = StableDiffusionXLPipeline.from_pretrained( | |
... "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16 | |
... ) | |
>>> pipe = pipe.to("cuda") | |
>>> prompt = "a photo of an astronaut riding a horse on mars" | |
>>> image = pipe(prompt).images[0] | |
``` | |
""" | |
class sdxl(StableDiffusionXLPipeline): | |
def __call__( | |
self, | |
controller=None, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
original_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Optional[Tuple[int, int]] = None, | |
same_init=False, | |
x_stars=None, | |
prox_guidance=True, | |
masa_control=False, | |
masa_mask=False, | |
masa_start_step=40, | |
masa_start_layer=55, | |
mask_file=None, | |
query_mask_time=[0, 10], | |
**kwargs | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
guidance_rescale (`float`, *optional*, defaults to 0.7): | |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of | |
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | |
`tuple. When returning a tuple, the first element is a list with the generated images, and the second | |
element is a list of `bool`s denoting whether the corresponding generated image likely represents | |
"not-safe-for-work" (nsfw) content, according to the `safety_checker`. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
inv_batch_size = len(latents) if latents is not None else 1 | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
sample_ref_match=kwargs['sample_ref_match'] if 'sample_ref_match' in kwargs else None, | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
same_init=same_init, #ADD | |
sample_ref_match=kwargs['sample_ref_match'] if 'sample_ref_match' in kwargs else None, | |
) | |
# 6. Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Prepare added time ids & embeddings | |
add_text_embeds = pooled_prompt_embeds | |
add_time_ids = self._get_add_time_ids( | |
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype | |
) | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
# CHANGE START | |
score_delta,mask_edit=self.prox_regularization( | |
noise_pred_uncond, | |
noise_pred_text, | |
i, | |
t, | |
prox_guidance=prox_guidance, | |
) | |
if mask_edit is not None: | |
a = 1 | |
noise_pred = noise_pred_uncond + guidance_scale * score_delta | |
# CHANGE END | |
if do_classifier_free_guidance and guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# ADD START | |
latents = self.proximal_guidance( | |
i, | |
t, | |
latents, | |
mask_edit, | |
prox_guidance=prox_guidance, | |
dtype=self.unet.dtype, | |
x_stars=x_stars, | |
controller=controller, | |
sample_ref_match=kwargs['sample_ref_match'] if 'sample_ref_match' in kwargs else None, | |
inv_batch_size=inv_batch_size, | |
only_inversion_align=kwargs['only_inversion_align'] if 'only_inversion_align' in kwargs else False, | |
) | |
# ADD END | |
if controller is not None: | |
latents = controller.step_callback(latents) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
self.vae.to(dtype=torch.float32) | |
use_torch_2_0_or_xformers = isinstance( | |
self.vae.decoder.mid_block.attentions[0].processor, | |
( | |
AttnProcessor2_0, | |
XFormersAttnProcessor, | |
LoRAXFormersAttnProcessor, | |
LoRAAttnProcessor2_0, | |
), | |
) | |
# if xformers or torch_2_0 is used attention block does not need | |
# to be in float32 which can save lots of memory | |
if use_torch_2_0_or_xformers: | |
self.vae.post_quant_conv.to(latents.dtype) | |
self.vae.decoder.conv_in.to(latents.dtype) | |
self.vae.decoder.mid_block.to(latents.dtype) | |
else: | |
latents = latents.float() | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
else: | |
image = latents | |
return StableDiffusionXLPipelineOutput(images=image) | |
image = self.watermark.apply_watermark(image) | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None,same_init=False,sample_ref_match=None): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if sample_ref_match is not None: | |
new_latents=randn_tensor((batch_size,*shape[1:]), generator=generator, device=device, dtype=dtype) | |
for key,value in sample_ref_match.items(): | |
new_latents[key]=latents[value].clone() | |
latents=new_latents | |
else: | |
if same_init is True: | |
if latents is None: | |
latents = randn_tensor((1,*shape[1:]), generator=generator, device=device, dtype=dtype).expand(shape).to(device) | |
else: | |
if batch_size>1 and latents.shape[0]==1: | |
latents=latents.expand(shape).to(device) | |
else: | |
latents = latents.to(device) | |
else: | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def encode_prompt( | |
self, | |
prompt, | |
device: Optional[torch.device] = None, | |
num_images_per_prompt: int = 1, | |
do_classifier_free_guidance: bool = True, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
sample_ref_match=None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
lora_scale (`float`, *optional*): | |
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
""" | |
device = device or self._execution_device | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# Define tokenizers and text encoders | |
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | |
text_encoders = ( | |
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
) | |
if prompt_embeds is None: | |
# textual inversion: procecss multi-vector tokens if necessary | |
prompt_embeds_list = [] | |
for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, tokenizer) | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
prompt_embeds = text_encoder( | |
text_input_ids.to(device), | |
output_hidden_states=True, | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
pooled_prompt_embeds = prompt_embeds[0] | |
prompt_embeds = prompt_embeds.hidden_states[-2] | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
prompt_embeds_list.append(prompt_embeds) | |
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
# get unconditional embeddings for classifier free guidance | |
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | |
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | |
negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
elif do_classifier_free_guidance and negative_prompt_embeds is None: | |
negative_prompt = negative_prompt or "" | |
uncond_tokens: List[str] | |
if prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
negative_prompt_embeds_list = [] | |
for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
negative_prompt_embeds = text_encoder( | |
uncond_input.input_ids.to(device), | |
output_hidden_states=True, | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
negative_prompt_embeds_list.append(negative_prompt_embeds) | |
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
bs_embed = pooled_prompt_embeds.shape[0] | |
# ADD START | |
if sample_ref_match is not None: | |
new_negative_prompt_embeds=torch.zeros_like(prompt_embeds) | |
new_negative_pooled_prompt_embeds=torch.zeros_like(pooled_prompt_embeds) | |
for key,value in sample_ref_match.items(): | |
new_negative_prompt_embeds[key]=negative_prompt_embeds[value].clone() | |
new_negative_pooled_prompt_embeds[key]=negative_pooled_prompt_embeds[value].clone() | |
negative_prompt_embeds=new_negative_prompt_embeds | |
negative_pooled_prompt_embeds=new_negative_pooled_prompt_embeds | |
else: | |
if negative_pooled_prompt_embeds.shape[0]==1 and bs_embed!=1: | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.repeat(bs_embed,1) | |
if negative_prompt_embeds.shape[0]==1 and bs_embed!=1: | |
negative_prompt_embeds=negative_prompt_embeds.repeat(bs_embed,1,1) | |
# ADD END | |
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
bs_embed * num_images_per_prompt, -1 | |
) | |
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
bs_embed * num_images_per_prompt, -1 | |
) | |
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
def encode_prompt_not_zero_uncond( | |
self, | |
prompt, | |
device: Optional[torch.device] = None, | |
num_images_per_prompt: int = 1, | |
do_classifier_free_guidance: bool = True, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
lora_scale (`float`, *optional*): | |
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
""" | |
device = device or self._execution_device | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# Define tokenizers and text encoders | |
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | |
text_encoders = ( | |
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
) | |
if prompt_embeds is None: | |
# textual inversion: procecss multi-vector tokens if necessary | |
prompt_embeds_list = [] | |
for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, tokenizer) | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
prompt_embeds = text_encoder(text_input_ids.to(device),output_hidden_states=True) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
pooled_prompt_embeds = prompt_embeds[0] | |
prompt_embeds = prompt_embeds.hidden_states[-2] | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
prompt_embeds_list.append(prompt_embeds) | |
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
negative_prompt = negative_prompt or "" | |
uncond_tokens: List[str] | |
if prompt is not None and isinstance(prompt,List) and negative_prompt == "": | |
negative_prompt = ["" for i in range(len(prompt))] | |
if prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
negative_prompt_embeds_list = [] | |
for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
negative_prompt_embeds = text_encoder( | |
uncond_input.input_ids.to(device), | |
output_hidden_states=True, | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
negative_prompt_embeds_list.append(negative_prompt_embeds) | |
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
bs_embed = pooled_prompt_embeds.shape[0] | |
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
bs_embed * num_images_per_prompt, -1 | |
) | |
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
bs_embed * num_images_per_prompt, -1 | |
) | |
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
def prox_regularization( | |
self, | |
noise_pred_uncond, | |
noise_pred_text, | |
i, | |
t, | |
prox_guidance=False, | |
prox=None, | |
quantile=0.75, | |
recon_t=400, | |
dilate_radius=2, | |
): | |
if prox_guidance is True: | |
mask_edit = None | |
if prox == 'l1': | |
score_delta = (noise_pred_text - noise_pred_uncond).float() | |
if quantile > 0: | |
threshold = score_delta.abs().quantile(quantile) | |
else: | |
threshold = -quantile # if quantile is negative, use it as a fixed threshold | |
score_delta -= score_delta.clamp(-threshold, threshold) | |
score_delta = torch.where(score_delta > 0, score_delta-threshold, score_delta) | |
score_delta = torch.where(score_delta < 0, score_delta+threshold, score_delta) | |
if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t): | |
mask_edit = (score_delta.abs() > threshold).float() | |
if dilate_radius > 0: | |
radius = int(dilate_radius) | |
mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius) | |
elif prox == 'l0': | |
score_delta = (noise_pred_text - noise_pred_uncond).float() | |
if quantile > 0: | |
threshold = score_delta.abs().quantile(quantile) | |
else: | |
threshold = -quantile # if quantile is negative, use it as a fixed threshold | |
score_delta -= score_delta.clamp(-threshold, threshold) | |
if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t): | |
mask_edit = (score_delta.abs() > threshold).float() | |
if dilate_radius > 0: | |
radius = int(dilate_radius) | |
mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius) | |
elif prox==None: | |
score_delta = (noise_pred_text - noise_pred_uncond).float() | |
if quantile > 0: | |
threshold = score_delta.abs().quantile(quantile) | |
else: | |
threshold = -quantile # if quantile is negative, use it as a fixed threshold | |
if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t): | |
mask_edit = (score_delta.abs() > threshold).float() | |
if dilate_radius > 0: | |
radius = int(dilate_radius) | |
mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius) | |
else: | |
raise NotImplementedError | |
return score_delta,mask_edit | |
else: | |
return noise_pred_text - noise_pred_uncond,None | |
def proximal_guidance( | |
self, | |
i, | |
t, | |
latents, | |
mask_edit, | |
dtype, | |
prox_guidance=False, | |
recon_t=400, | |
recon_end=0, | |
recon_lr=0.1, | |
x_stars=None, | |
controller=None, | |
sample_ref_match=None, | |
inv_batch_size=1, | |
only_inversion_align=False, | |
): | |
if mask_edit is not None and prox_guidance and (recon_t > recon_end and t < recon_t) or (recon_t < -recon_end and t > -recon_t): | |
if controller.layer_fusion.remove_mask is not None: | |
fix_mask = copy.deepcopy(controller.layer_fusion.remove_mask) | |
mask_edit[1] = (mask_edit[1]+fix_mask).clamp(0,1) | |
if mask_edit.shape[0] > 2: | |
mask_edit[2].fill_(1) | |
recon_mask = 1 - mask_edit | |
target_latents=x_stars[len(x_stars)-i-2] | |
new_target_latents=torch.zeros_like(latents) | |
for key,value in sample_ref_match.items(): | |
new_target_latents[key]=target_latents[value].clone() | |
latents = latents - recon_lr * (latents - new_target_latents) * recon_mask | |
return latents.to(dtype) | |
def slerp(val, low, high): | |
""" taken from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/4 | |
""" | |
low_norm = low/torch.norm(low, dim=1, keepdim=True) | |
high_norm = high/torch.norm(high, dim=1, keepdim=True) | |
omega = torch.acos((low_norm*high_norm).sum(1)) | |
so = torch.sin(omega) | |
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high | |
return res | |
def slerp_tensor(val, low, high): | |
shape = low.shape | |
res = slerp(val, low.flatten(1), high.flatten(1)) | |
return res.reshape(shape) | |
def dilate(image, kernel_size, stride=1, padding=0): | |
""" | |
Perform dilation on a binary image using a square kernel. | |
""" | |
# Ensure the image is binary | |
assert image.max() <= 1 and image.min() >= 0 | |
# Get the maximum value in each neighborhood | |
dilated_image = F.max_pool2d(image, kernel_size, stride, padding) | |
return dilated_image | |
def exec_classifier_free_guidance(model,latents,controller,t,guidance_scale, | |
do_classifier_free_guidance,noise_pred,guidance_rescale, | |
prox=None, quantile=0.75,image_enc=None, recon_lr=0.1, recon_t=400,recon_end_t=0, | |
inversion_guidance=False, reconstruction_guidance=False,x_stars=None, i=0, | |
use_localblend_mask=False, | |
save_heatmap=False,**kwargs): | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
#noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if prox is None and inversion_guidance is True: | |
prox = 'l1' | |
step_kwargs = { | |
'ref_image': None, | |
'recon_lr': 0, | |
'recon_mask': None, | |
} | |
mask_edit = None | |
if prox is not None: | |
if prox == 'l1': | |
score_delta = (noise_pred_text - noise_pred_uncond).float() | |
if quantile > 0: | |
threshold = score_delta.abs().quantile(quantile) | |
else: | |
threshold = -quantile # if quantile is negative, use it as a fixed threshold | |
score_delta -= score_delta.clamp(-threshold, threshold) | |
score_delta = torch.where(score_delta > 0, score_delta-threshold, score_delta) | |
score_delta = torch.where(score_delta < 0, score_delta+threshold, score_delta) | |
if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t): | |
step_kwargs['ref_image'] = image_enc | |
step_kwargs['recon_lr'] = recon_lr | |
score_delta_norm=score_delta.abs() | |
score_delta_norm=(score_delta_norm - score_delta_norm.min ()) / (score_delta_norm.max () - score_delta_norm.min ()) | |
mask_edit = (score_delta.abs() > threshold).float() | |
if save_heatmap and i%10==0: | |
for kk in range(4): | |
sns.heatmap(mask_edit[1][kk].clone().cpu(), cmap='coolwarm') | |
plt.savefig(f'./vis/prox_inv/heatmap1_mask_{i}_{kk}.png') | |
plt.clf() | |
if kwargs.get('dilate_mask', 2) > 0: | |
radius = int(kwargs.get('dilate_mask', 2)) | |
mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius) | |
if save_heatmap and i%10==0: | |
for kk in range(4): | |
sns.heatmap(mask_edit[1][kk].clone().cpu(), cmap='coolwarm') | |
plt.savefig(f'./vis/prox_inv/heatmap1_mask_dilate_{i}_{kk}.png') | |
plt.clf() | |
step_kwargs['recon_mask'] = 1 - mask_edit | |
elif prox == 'l0': | |
score_delta = (noise_pred_text - noise_pred_uncond).float() | |
if quantile > 0: | |
threshold = score_delta.abs().quantile(quantile) | |
else: | |
threshold = -quantile # if quantile is negative, use it as a fixed threshold | |
score_delta -= score_delta.clamp(-threshold, threshold) | |
if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t): | |
step_kwargs['ref_image'] = image_enc | |
step_kwargs['recon_lr'] = recon_lr | |
mask_edit = (score_delta.abs() > threshold).float() | |
if kwargs.get('dilate_mask', 2) > 0: | |
radius = int(kwargs.get('dilate_mask', 2)) | |
mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius) | |
step_kwargs['recon_mask'] = 1 - mask_edit | |
else: | |
raise NotImplementedError | |
noise_pred = (noise_pred_uncond + guidance_scale * score_delta).to(model.unet.dtype) | |
else: | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if do_classifier_free_guidance and guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
if reconstruction_guidance: | |
kwargs.update(step_kwargs) | |
latents = model.scheduler.step(noise_pred, t, latents, **kwargs, return_dict=False)[0] | |
if mask_edit is not None and inversion_guidance and (recon_t > recon_end_t and t < recon_t) or (recon_t < recon_end_t and t > -recon_t): | |
if use_localblend_mask: | |
assert hasattr(controller,"layer_fusion") | |
if save_heatmap and i%10==0: | |
sns.heatmap(controller.layer_fusion.mask[0][0].clone().cpu(), cmap='coolwarm') | |
plt.savefig(f'./vis/prox_inv/heatmap0_localblendmask_{i}.png') | |
plt.clf() | |
sns.heatmap(controller.layer_fusion.mask[1][0].clone().cpu(), cmap='coolwarm') | |
plt.savefig(f'./vis/prox_inv/heatmap1_localblendmask_{i}.png') | |
plt.clf() | |
layer_fusion_mask=controller.layer_fusion.mask.float() | |
layer_fusion_mask[0]=layer_fusion_mask[1] | |
recon_mask=1-layer_fusion_mask.expand_as(latents) | |
else: | |
recon_mask = 1 - mask_edit | |
target_latents=x_stars[len(x_stars)-i-2].expand_as(latents) | |
# if target_latents有四维 | |
if len(target_latents.shape)==4: | |
target_latents=target_latents[0] | |
latents = latents - recon_lr * (latents - target_latents) * recon_mask | |
# controller | |
if controller is not None: | |
latents = controller.step_callback(latents) | |
return latents.to(model.unet.dtype) | |