Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from diffusers import AnimateDiffSparseControlNetPipeline, AutoencoderKL, MotionAdapter, SparseControlNetModel, AnimateDiffPipeline, EulerAncestralDiscreteScheduler | |
from diffusers.schedulers import DPMSolverMultistepScheduler | |
from diffusers.utils import export_to_gif, load_image | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_frame_indices, controlnet_conditioning_scale): | |
motion_adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=torch.float16).to(device) | |
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device) | |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to(device) | |
pipe = AnimateDiffSparseControlNetPipeline.from_pretrained( | |
"SG161222/Realistic_Vision_V5.1_noVAE", | |
motion_adapter=motion_adapter, | |
controlnet=controlnet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
).to(device) | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++", use_karras_sigmas=True) | |
image_files = [ | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png", | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png", | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png" | |
] | |
conditioning_frames = [load_image(img_file) for img_file in image_files] | |
# Ensure conditioning_frame_indices is a list of integers | |
conditioning_frame_indices = eval(conditioning_frame_indices) | |
controlnet_conditioning_scale = float(controlnet_conditioning_scale) | |
video = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=num_inference_steps, | |
conditioning_frames=conditioning_frames, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
controlnet_frame_indices=conditioning_frame_indices, | |
generator=torch.Generator().manual_seed(1337), | |
).frames[0] | |
export_to_gif(video, "output.gif") | |
return "output.gif" | |
def generate_simple_video(prompt): | |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16).to(device) | |
pipe = AnimateDiffPipeline.from_pretrained("SG161222/Realistic_Vision_V6.0_B1_noVAE", motion_adapter=adapter, torch_dtype=torch.float16).to(device) | |
pipe.scheduler = EulerAncestralDiscreteScheduler( | |
beta_schedule="linear", | |
beta_start=0.00085, | |
beta_end=0.012, | |
) | |
pipe.enable_free_noise() | |
pipe.vae.enable_slicing() | |
pipe.enable_model_cpu_offload() | |
frames = pipe( | |
prompt, | |
num_frames=64, | |
num_inference_steps=20, | |
guidance_scale=7.0, | |
decode_chunk_size=2, | |
).frames[0] | |
export_to_gif(frames, "simple_output.gif") | |
return "simple_output.gif" | |
demo1 = gr.Interface( | |
fn=generate_video, | |
inputs=[ | |
gr.Textbox(label="Prompt", value="an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality"), | |
gr.Textbox(label="Negative Prompt", value="low quality, worst quality, letterboxed"), | |
gr.Slider(label="Number of Inference Steps", minimum=1, maximum=100, step=1, value=25), | |
gr.Textbox(label="Conditioning Frame Indices", value="[0, 8, 15]"), | |
gr.Slider(label="ControlNet Conditioning Scale", minimum=0.1, maximum=2.0, step=0.1, value=1.0) | |
], | |
outputs=gr.Image(label="Generated Video"), | |
title="Generate Video with AnimateDiffSparseControlNetPipeline", | |
description="Generate a video using the AnimateDiffSparseControlNetPipeline." | |
) | |
demo2 = gr.Interface( | |
fn=generate_simple_video, | |
inputs=gr.Textbox(label="Prompt", value="An astronaut riding a horse on Mars."), | |
outputs=gr.Image(label="Generated Simple Video"), | |
title="Generate Simple Video with AnimateDiff", | |
description="Generate a simple video using the AnimateDiffPipeline." | |
) | |
demo = gr.TabbedInterface([demo1, demo2], ["Advanced Video Generation", "Simple Video Generation"]) | |
demo.launch() | |
#demo.launch(server_name="0.0.0.0", server_port=7910) | |