Spaces:
Paused
Paused
File size: 4,937 Bytes
d18f074 89df602 d18f074 457dd9b 89df602 d18f074 89df602 d18f074 89df602 992a99c d18f074 89df602 d18f074 89df602 e276a90 b5d38bf 89df602 b5d38bf 6ca6cf4 89df602 b5d38bf 89df602 457dd9b 89df602 e276a90 89df602 e276a90 d18f074 89df602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
#import gradio.helpers
import torch
import os
from glob import glob
from pathlib import Path
from typing import Optional
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from PIL import Image
import uuid
import random
from huggingface_hub import hf_hub_download
import spaces
pipe = StableVideoDiffusionPipeline.from_pretrained(
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
)
pipe.to("cuda")
max_64_bit_int = 2**63 - 1
@spaces.GPU(duration=120)
def sample(
image: Image,
seed: Optional[int] = 42,
randomize_seed: bool = True,
motion_bucket_id: int = 127,
fps_id: int = 6,
version: str = "svd_xt",
cond_aug: float = 0.02,
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
output_folder: str = "outputs",
):
if image.mode == "RGBA":
image = image.convert("RGB")
if(randomize_seed):
seed = random.randint(0, max_64_bit_int)
generator = torch.manual_seed(seed)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
export_to_video(frames, video_path, fps=fps_id)
return video_path, frames, seed
def resize_image(image, output_size=(1024, 576)):
# Calculate aspect ratios
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
image_aspect = image.width / image.height # Aspect ratio of the original image
# Do not touch the image if the size is good
if image.width == output_size[0] and image.height == output_size[1]:
return image
# Resize then crop if the original image is larger
if image_aspect > target_aspect:
# Resize the image to match the target height, maintaining aspect ratio
new_height = output_size[1]
new_width = int(new_height * image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = (new_width - output_size[0]) / 2
top = 0
right = (new_width + output_size[0]) / 2
bottom = output_size[1]
else:
# Resize the image to match the target width, maintaining aspect ratio
new_width = output_size[0]
new_height = int(new_width / image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = 0
top = (new_height - output_size[1]) / 2
right = output_size[0]
bottom = (new_height + output_size[1]) / 2
# Crop the image
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
with gr.Blocks() as demo:
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
''')
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload your image", type="pil")
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
generate_btn = gr.Button(value="Animate", variant="primary")
with gr.Column():
video = gr.Video(label="Generated video")
gallery = gr.Gallery(label="Generated frames")
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, gallery, seed], api_name="video")
if __name__ == "__main__":
demo.launch(share=True, show_api=False) |