import discord import logging import os from huggingface_hub import InferenceClient import asyncio import subprocess from datasets import load_dataset import pandas as pd from fuzzywuzzy import process # 현재 작업 디렉토리 출력 print("Current Working Directory:", os.getcwd()) # 데이터셋 파일 이름 data_files = ['train_0.csv', 'train_1.csv', 'train_2.csv', 'train_3.csv', 'train_4.csv', 'train_5.csv'] # 현재 작업 디렉토리에 모든 파일이 있는지 확인 missing_files = [file for file in data_files if not os.path.exists(file)] if missing_files: print(f"Missing files: {missing_files}") # 필요한 경우 작업 디렉토리 변경 os.chdir('/home/user/app') print("Changed directory to:", os.getcwd()) else: print("All files are present in the current directory.") # 데이터셋 로드 및 최적화 def load_optimized_dataset(data_files): data_frames = [pd.read_csv(file) for file in data_files] full_data = pd.concat(data_frames, ignore_index=True) # NaN 값 처리 full_data['판시사항'] = full_data['판시사항'].fillna('') full_data['사건명'] = full_data['사건명'].fillna('') # 사건명을 키로 하고 사건번호와 전문을 저장하는 딕셔너리 생성 name_to_number = full_data.groupby('사건명')['사건번호'].apply(list).to_dict() summary_to_number = full_data.groupby('판시사항')['사건번호'].apply(list).to_dict() number_to_fulltext = full_data.set_index('사건번호')['전문'].to_dict() return name_to_number, summary_to_number, number_to_fulltext name_to_number, summary_to_number, number_to_fulltext = load_optimized_dataset(data_files) print("Dataset loaded successfully.") # 사건명 및 판시사항 리스트 생성 all_case_names = list(name_to_number.keys()) all_case_summaries = list(summary_to_number.keys()) # 디버깅용 로깅 logging.debug(f"Sample all_case_names: {all_case_names[:3]}") logging.debug(f"Sample all_case_summaries: {all_case_summaries[:3]}") # 로깅 설정 logging.basicConfig(level=logging.DEBUG, format='%(asctime)s:%(levelname)s:%(name)s: %(message)s', handlers=[logging.StreamHandler()]) # 인텐트 설정 intents = discord.Intents.default() intents.message_content = True intents.messages = True intents.guilds = True intents.guild_messages = True # 추론 API 클라이언트 설정 (예시로 포함, 실제로 사용되지 않음) hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=os.getenv("HF_TOKEN")) # 특정 채널 ID SPECIFIC_CHANNEL_ID = int(os.getenv("DISCORD_CHANNEL_ID")) # 대화 히스토리를 저장할 전역 변수 conversation_history = [] class MyClient(discord.Client): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.is_processing = False async def on_ready(self): logging.info(f'{self.user}로 로그인되었습니다!') subprocess.Popen(["python", "web.py"]) logging.info("Web.py server has been started.") async def on_message(self, message): if message.author == self.user: return if not self.is_message_in_specific_channel(message): return if self.is_processing: logging.debug("Currently processing another message, skipping this one.") return self.is_processing = True try: response_parts = await generate_response(message) if response_parts: for part in response_parts: await message.channel.send(part) else: await message.channel.send("죄송합니다, 제공할 수 있는 정보가 없습니다.") finally: self.is_processing = False logging.debug("Message processing completed, ready for the next one.") def is_message_in_specific_channel(self, message): channel_condition = message.channel.id == SPECIFIC_CHANNEL_ID thread_condition = isinstance(message.channel, discord.Thread) and message.channel.parent_id == SPECIFIC_CHANNEL_ID return channel_condition or thread_condition async def generate_response(message): global conversation_history user_input = message.content.strip() user_mention = message.author.mention # 유사한 사건명 및 판시사항 각각 찾기 matched_case_names = process.extractBests(user_input, all_case_names, limit=3, score_cutoff=70) matched_case_summaries = process.extractBests(user_input, all_case_summaries, limit=3, score_cutoff=70) logging.debug(f"Matched case names: {matched_case_names}") logging.debug(f"Matched case summaries: {matched_case_summaries}") case_numbers_set = set() if matched_case_names: for case_name, score in matched_case_names: case_numbers_set.update(name_to_number.get(case_name, [])) if matched_case_summaries: for case_summary, score in matched_case_summaries: case_numbers_set.update(summary_to_number.get(case_summary, [])) if case_numbers_set: case_numbers_str = "\n".join(case_numbers_set) system_message = f"{user_mention}, '{user_input}'와 유사한 사건의 사건번호는 다음과 같습니다:\n{case_numbers_str}" elif user_input in number_to_fulltext: full_text = number_to_fulltext[user_input] system_message = f"{user_mention}, 사건번호 '{user_input}'의 전문은 다음과 같습니다:\n\n{full_text}" else: system_message = f"{user_mention}, 관련 법률 정보를 찾을 수 없습니다." # 메시지 길이 제한 처리 max_length = 2000 response_parts = [] for i in range(0, len(system_message), max_length): part_response = system_message[i:i + max_length] response_parts.append(part_response) return response_parts if __name__ == "__main__": discord_client = MyClient(intents=intents) discord_client.run(os.getenv('DISCORD_TOKEN'))