Spaces:
Runtime error
Runtime error
File size: 6,359 Bytes
cbb3c45 e4ec328 2ec72fb e4ec328 2ec72fb 55b50fa 2ec72fb c5df60d 2ec72fb ec82a85 2ec72fb 1d5df6c c5df60d 2ec72fb c5df60d 2ec72fb c5df60d 2ec72fb 55b50fa 2ec72fb ec82a85 2ec72fb 55b50fa 2ec72fb c5df60d 2ec72fb 8808030 2ec72fb 8808030 2ec72fb c5df60d 2ec72fb c8fa5b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import spaces
import os, logging, time, argparse, random, tempfile, rembg, shlex, subprocess
import gradio as gr
import numpy as np
import torch
from PIL import Image
from functools import partial
subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))
from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
from src.scheduler_perflow import PeRFlowScheduler
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
def fill_background(img):
img = np.array(img).astype(np.float32) / 255.0
img = img[:, :, :3] * img[:, :, 3:4] + (1 - img[:, :, 3:4]) * 0.5
img = Image.fromarray((img * 255.0).astype(np.uint8))
return img
def merge_delta_weights_into_unet(pipe, delta_weights, org_alpha = 1.0):
unet_weights = pipe.unet.state_dict()
for key in delta_weights.keys():
dtype = unet_weights[key].dtype
try:
unet_weights[key] = org_alpha * unet_weights[key].to(dtype=delta_weights[key].dtype) + delta_weights[key].to(device=unet_weights[key].device)
except:
unet_weights[key] = unet_weights[key].to(dtype=delta_weights[key].dtype)
unet_weights[key] = unet_weights[key].to(dtype)
pipe.unet.load_state_dict(unet_weights, strict=True)
return pipe
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"
### TripoSR
model = TSR.from_pretrained(
"stabilityai/TripoSR",
config_name="config.yaml",
weight_name="model.ckpt",
)
# adjust the chunk size to balance between speed and memory usage
model.renderer.set_chunk_size(8192)
model.to(device)
### PeRFlow-T2I
# pipe_t2i = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-8", torch_dtype=torch.float16, safety_checker=None)
# pipe_t2i = StableDiffusionPipeline.from_pretrained("stablediffusionapi/disney-pixar-cartoon", torch_dtype=torch.float16, safety_checker=None)
# delta_weights = UNet2DConditionModel.from_pretrained("hansyan/piecewise-rectified-flow-delta-weights", torch_dtype=torch.float16, variant="v0-1",).state_dict()
# pipe_t2i = merge_delta_weights_into_unet(pipe_t2i, delta_weights)
pipe_t2i = StableDiffusionPipeline.from_pretrained("hansyan/perflow-sd15-disney", torch_dtype=torch.float16, safety_checker=None)
pipe_t2i.scheduler = PeRFlowScheduler.from_config(pipe_t2i.scheduler.config, prediction_type="epsilon", num_time_windows=4)
pipe_t2i.to('cuda:0', torch.float16)
### gradio
rembg_session = rembg.new_session()
@spaces.GPU
def generate(text, seed):
def fill_background(image):
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
setup_seed(int(seed))
prompt_prefix = "high quality, highly detailed, (best quality, masterpiece), "
neg_prompt = "EasyNegative, drawn by bad-artist, sketch by bad-artist-anime, (bad_prompt:0.8), (artist name, signature, watermark:1.4), (ugly:1.2), (worst quality, poor details:1.4), bad-hands-5, badhandv4, blurry"
text = prompt_prefix + text
samples = pipe_t2i(
prompt = [text],
negative_prompt = [neg_prompt],
height = 512,
width = 512,
# num_inference_steps = 6,
# guidance_scale = 7.5,
num_inference_steps = 8,
guidance_scale = 7.5,
output_type = 'pt',
).images
samples = samples.squeeze(0).permute(1, 2, 0).cpu().numpy()*255.
samples = samples.astype(np.uint8)
samples = Image.fromarray(samples[:, :, :3])
return samples
@spaces.GPU
def render(image, mc_resolution=256, formats=["obj"]):
image = Image.fromarray(image)
image = image.resize((768, 768))
image = remove_background(image, rembg_session)
image = resize_foreground(image, 0.85)
image = fill_background(image)
scene_codes = model(image, device=device)
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
mesh = to_gradio_3d_orientation(mesh)
rv = []
for format in formats:
mesh_path = tempfile.NamedTemporaryFile(suffix=f".{format}", delete=False)
mesh.export(mesh_path.name)
rv.append(mesh_path.name)
return rv[0]
# layout
css = """
h1 {
text-align: center;
display:block;
}
h2 {
text-align: center;
display:block;
}
h3 {
text-align: center;
display:block;
}
"""
with gr.Blocks(title="TripoSR", css=css) as interface:
gr.Markdown(
"""
# Instant Text-to-3D Mesh Demo
### [PeRFlow](https://github.com/magic-research/piecewise-rectified-flow)-T2I + [TripoSR](https://github.com/VAST-AI-Research/TripoSR)
Two-stage synthesis: 1) generating images by PeRFlow-T2I; 2) rendering 3D assests.
"""
)
with gr.Column():
with gr.Row():
output_image = gr.Image(label='Generated Image', height=384,)
output_model_obj = gr.Model3D(
label="Output 3D Model (OBJ Format)",
interactive=False,
height=384,
)
with gr.Row():
textbox = gr.Textbox(label="Input Prompt", value="a colorful bird")
seed = gr.Textbox(label="Random Seed", value=42)
gr.Markdown(
"""
Examples:
- a policeman
- a robot, close-up
- a red car, side view
- a blue mug
- a burger
- a tea pot
- a wooden chair
- an amazing unicorn
"""
)
# activate
textbox.submit(
fn=generate,
inputs=[textbox, seed],
outputs=[output_image],
).success(
fn=render,
inputs=[output_image],
outputs=[output_model_obj],
)
seed.submit(
fn=generate,
inputs=[textbox, seed],
outputs=[output_image],
).success(
fn=render,
inputs=[output_image],
outputs=[output_model_obj],
)
if __name__ == '__main__':
interface.queue(max_size=10)
interface.launch()
|