Spaces:
Runtime error
Runtime error
File size: 15,308 Bytes
2ec72fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
class Time_Windows():
def __init__(self, t_initial=1, t_terminal=0, num_windows=4, precision=1./1000) -> None:
assert t_terminal < t_initial
time_windows = [ 1.*i/num_windows for i in range(1, num_windows+1)][::-1]
self.window_starts = time_windows # [1.0, 0.75, 0.5, 0.25]
self.window_ends = time_windows[1:] + [t_terminal] # [0.75, 0.5, 0.25, 0]
self.precision = precision
def get_window(self, tp):
idx = 0
# robust to numerical error; e.g, (0.6+1/10000) belongs to [0.6, 0.3)
while (tp-0.1*self.precision) <= self.window_ends[idx]:
idx += 1
return self.window_starts[idx], self.window_ends[idx]
def lookup_window(self, timepoint):
if timepoint.dim() == 0:
t_start, t_end = self.get_window(timepoint)
t_start = torch.ones_like(timepoint) * t_start
t_end = torch.ones_like(timepoint) * t_end
else:
t_start = torch.zeros_like(timepoint)
t_end = torch.zeros_like(timepoint)
bsz = timepoint.shape[0]
for i in range(bsz):
tp = timepoint[i]
ts, te = self.get_window(tp)
t_start[i] = ts
t_end[i] = te
return t_start, t_end
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class PeRFlowSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
num_diffusion_timesteps,
max_beta=0.999,
alpha_transform_type="cosine",
):
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
Choose from `cosine` or `exp`
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(t):
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(t):
return math.exp(t * -12.0)
else:
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
return torch.tensor(betas, dtype=torch.float32)
class PeRFlowScheduler(SchedulerMixin, ConfigMixin):
"""
`ReFlowScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
non-Markovian guidance.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
set_alpha_to_one (`bool`, defaults to `True`):
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
otherwise it uses the alpha value at step 0.
prediction_type (`str`, defaults to `epsilon`, *optional*)
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.00085,
beta_end: float = 0.012,
beta_schedule: str = "scaled_linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
set_alpha_to_one: bool = False,
prediction_type: str = "epsilon",
t_noise: float = 1,
t_clean: float = 0,
num_time_windows = 4,
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# At every step in ddim, we are looking into the previous alphas_cumprod
# For the final step, there is no previous alphas_cumprod because we are already at 0
# `set_alpha_to_one` decides whether we set this parameter simply to one or
# whether we use the final alpha of the "non-previous" one.
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
# # standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
self.time_windows = Time_Windows(t_initial=t_noise, t_terminal=t_clean,
num_windows=num_time_windows,
precision=1./num_train_timesteps)
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.FloatTensor`:
A scaled input sample.
"""
return sample
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
"""
if num_inference_steps < self.config.num_time_windows:
num_inference_steps = self.config.num_time_windows
print(f"### We recommend a num_inference_steps not less than num_time_windows. It's set as {self.config.num_time_windows}.")
timesteps = []
for i in range(self.config.num_time_windows):
if i < num_inference_steps%self.config.num_time_windows:
num_steps_cur_win = num_inference_steps//self.config.num_time_windows+1
else:
num_steps_cur_win = num_inference_steps//self.config.num_time_windows
t_s = self.time_windows.window_starts[i]
t_e = self.time_windows.window_ends[i]
timesteps_cur_win = np.linspace(t_s, t_e, num=num_steps_cur_win, endpoint=False)
timesteps.append(timesteps_cur_win)
timesteps = np.concatenate(timesteps)
self.timesteps = torch.from_numpy(
(timesteps*self.config.num_train_timesteps).astype(np.int64)
).to(device)
def get_window_alpha(self, timestep):
time_windows = self.time_windows
num_train_timesteps = self.config.num_train_timesteps
t_win_start, t_win_end = time_windows.lookup_window(timestep / num_train_timesteps)
t_win_len = t_win_end - t_win_start
t_interval = timestep / num_train_timesteps - t_win_start # NOTE: negative value
idx_start = (t_win_start*num_train_timesteps - 1 ).long()
idx_end = torch.clamp( (t_win_end*num_train_timesteps - 1 ).long(), min=0)
alpha_cumprod_s_e = self.alphas_cumprod[idx_start] / self.alphas_cumprod[idx_end]
gamma_s_e = alpha_cumprod_s_e ** 0.5
return t_win_start, t_win_end, t_win_len, t_interval, gamma_s_e
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
return_dict: bool = True,
) -> Union[PeRFlowSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_ddim.PeRFlowSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.PeRFlowSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_ddim.PeRFlowSchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
if self.config.prediction_type == "epsilon":
pred_epsilon = model_output
t_win_start, t_win_end, t_win_len, t_interval, gamma_s_e = self.get_window_alpha(timestep)
pred_sample_end = ( sample - (1-t_interval/t_win_len) * ((1-gamma_s_e**2)**0.5) * pred_epsilon ) \
/ ( gamma_s_e + t_interval / t_win_len * (1-gamma_s_e) )
pred_velocity = (pred_sample_end - sample) / (t_win_end - (t_win_start + t_interval))
elif self.config.prediction_type == "velocity":
pred_velocity = model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `velocity`."
)
# get dt
idx = torch.argwhere(torch.where(self.timesteps==timestep, 1,0))
prev_step = self.timesteps[idx+1] if (idx+1)<len(self.timesteps) else 0
dt = (prev_step - timestep) / self.config.num_train_timesteps
dt = dt.to(sample.device, sample.dtype)
prev_sample = sample + dt * pred_velocity
if not return_dict:
return (prev_sample,)
return PeRFlowSchedulerOutput(prev_sample=prev_sample, pred_original_sample=None)
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device) - 1 # indexing from 0
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps
|