from typing import Callable, Optional, Tuple import numpy as np import torch import torch.nn as nn from torchmcubes import marching_cubes class IsosurfaceHelper(nn.Module): points_range: Tuple[float, float] = (0, 1) @property def grid_vertices(self) -> torch.FloatTensor: raise NotImplementedError class MarchingCubeHelper(IsosurfaceHelper): def __init__(self, resolution: int) -> None: super().__init__() self.resolution = resolution self.mc_func: Callable = marching_cubes self._grid_vertices: Optional[torch.FloatTensor] = None @property def grid_vertices(self) -> torch.FloatTensor: if self._grid_vertices is None: # keep the vertices on CPU so that we can support very large resolution x, y, z = ( torch.linspace(*self.points_range, self.resolution), torch.linspace(*self.points_range, self.resolution), torch.linspace(*self.points_range, self.resolution), ) x, y, z = torch.meshgrid(x, y, z, indexing="ij") verts = torch.cat( [x.reshape(-1, 1), y.reshape(-1, 1), z.reshape(-1, 1)], dim=-1 ).reshape(-1, 3) self._grid_vertices = verts return self._grid_vertices def forward( self, level: torch.FloatTensor, ) -> Tuple[torch.FloatTensor, torch.LongTensor]: level = -level.view(self.resolution, self.resolution, self.resolution) try: v_pos, t_pos_idx = self.mc_func(level.detach(), 0.0) except AttributeError: print("torchmcubes was not compiled with CUDA support, use CPU version instead.") v_pos, t_pos_idx = self.mc_func(level.detach().cpu(), 0.0) v_pos = v_pos[..., [2, 1, 0]] v_pos = v_pos / (self.resolution - 1.0) return v_pos.to(level.device), t_pos_idx.to(level.device)