Spaces:
Sleeping
Sleeping
File size: 9,005 Bytes
e3003c7 c3585da e3003c7 4fc19bf e3003c7 4fc19bf e3003c7 4fc19bf e3003c7 4fc19bf c3585da e3003c7 4fc19bf e3003c7 4fc19bf e3003c7 4fc19bf e3003c7 d460df7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
import torch
from chronos import ChronosPipeline
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from sklearn.metrics import mean_absolute_error, mean_squared_error
import tempfile
def get_popular_tickers():
return [
"AAPL", "MSFT", "GOOGL", "AMZN", "META", "TSLA", "NVDA", "JPM",
"JNJ", "V", "PG", "WMT", "BAC", "DIS", "NFLX", "INTC"
]
def predict_stock(ticker, train_data_points, prediction_days):
try:
# Asegurar que los par谩metros sean enteros
train_data_points = int(train_data_points)
prediction_days = int(prediction_days)
# Configurar el pipeline
pipeline = ChronosPipeline.from_pretrained(
"amazon/chronos-t5-mini",
device_map="cpu",
torch_dtype=torch.float32
)
# Obtener datos hist贸ricos
stock = yf.Ticker(ticker)
hist = stock.history(period="max")
if hist.empty:
raise ValueError(f"No hay datos disponibles para {ticker}")
stock_prices = hist[['Close']].reset_index()
df = stock_prices.rename(columns={'Date': 'Date', 'Close': f'{ticker}_Close'})
total_points = len(df)
if total_points < 50:
raise ValueError(f"Datos insuficientes para {ticker}")
# Asegurar que el n煤mero de datos de entrenamiento no exceda el total disponible
train_data_points = min(train_data_points, total_points)
# Crear el contexto para entrenamiento
context = torch.tensor(df[f'{ticker}_Close'][:train_data_points].values, dtype=torch.float32)
# Realizar predicci贸n
forecast = pipeline.predict(context, prediction_days, limit_prediction_length=False)
low, median, high = np.quantile(forecast[0].numpy(), [0.01, 0.5, 0.99], axis=0)
plt.figure(figsize=(20, 10))
plt.clf()
# Determinar el rango de fechas para mostrar
context_days = min(10, train_data_points)
start_index = max(0, train_data_points - context_days)
end_index = min(train_data_points + prediction_days, total_points)
# Plotear datos hist贸ricos
historical_dates = df['Date'][start_index:end_index]
historical_data = df[f'{ticker}_Close'][start_index:end_index].values
plt.plot(historical_dates,
historical_data,
color='blue',
linewidth=2,
label='Datos Reales')
# Crear fechas para la predicci贸n
if train_data_points < total_points:
prediction_start_date = df['Date'].iloc[train_data_points]
else:
last_date = df['Date'].iloc[-1]
prediction_start_date = last_date + pd.Timedelta(days=1)
prediction_dates = pd.date_range(start=prediction_start_date, periods=prediction_days, freq='B')
# Plotear predicci贸n
plt.plot(prediction_dates,
median,
color='black',
linewidth=2,
linestyle='-',
label='Predicci贸n')
# 脕rea de confianza
plt.fill_between(prediction_dates, low, high,
color='gray', alpha=0.2,
label='Intervalo de Confianza')
# Calcular m茅tricas si hay datos reales para comparar
overlap_end_index = train_data_points + prediction_days
if overlap_end_index <= total_points:
real_future_dates = df['Date'][train_data_points:overlap_end_index]
real_future_data = df[f'{ticker}_Close'][train_data_points:overlap_end_index].values
matching_dates = real_future_dates[real_future_dates.isin(prediction_dates)]
matching_indices = matching_dates.index - train_data_points
plt.plot(matching_dates,
real_future_data[matching_indices],
color='red',
linewidth=2,
linestyle='--',
label='Datos Reales de Validaci贸n')
predicted_data = median[:len(matching_indices)]
mae = mean_absolute_error(real_future_data[matching_indices], predicted_data)
rmse = np.sqrt(mean_squared_error(real_future_data[matching_indices], predicted_data))
mape = np.mean(np.abs((real_future_data[matching_indices] - predicted_data) / real_future_data[matching_indices])) * 100
plt.title(f"Predicci贸n del Precio de {ticker}\nMAE: {mae:.2f} | RMSE: {rmse:.2f} | MAPE: {mape:.2f}%",
fontsize=14, pad=20)
else:
plt.title(f"Predicci贸n Futura del Precio de {ticker}",
fontsize=14, pad=20)
plt.legend(loc="upper left", fontsize=12)
plt.xlabel("Fecha", fontsize=12)
plt.ylabel("Precio", fontsize=12)
plt.grid(True, which='both', axis='x', linestyle='--', linewidth=0.5)
ax = plt.gca()
locator = mdates.DayLocator()
formatter = mdates.DateFormatter('%Y-%m-%d')
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
plt.setp(ax.get_xticklabels(), rotation=45, ha='right')
plt.tight_layout()
# Crear archivo CSV temporal
temp_csv = tempfile.NamedTemporaryFile(delete=False, suffix='.csv')
prediction_df = pd.DataFrame({
'Date': prediction_dates,
'Predicted_Price': median,
'Lower_Bound': low,
'Upper_Bound': high
})
if overlap_end_index <= total_points:
real_future_dates = df['Date'][train_data_points:overlap_end_index]
real_future_data = df[f'{ticker}_Close'][train_data_points:overlap_end_index].values
matching_dates = real_future_dates[real_future_dates.isin(prediction_dates)]
prediction_df = prediction_df[prediction_df['Date'].isin(matching_dates)]
prediction_df['Real_Price'] = real_future_data[:len(prediction_df)]
prediction_df.to_csv(temp_csv.name, index=False)
temp_csv.close()
return plt, temp_csv.name
except Exception as e:
print(f"Error: {str(e)}")
raise gr.Error(f"Error al procesar {ticker}: {str(e)}")
def update_train_data_points(ticker):
if not ticker:
return gr.Slider.update(value=1000, maximum=5000)
try:
stock = yf.Ticker(ticker)
hist = stock.history(period="max")
if hist.empty:
raise ValueError(f"No hay datos disponibles para {ticker}")
total_points = len(hist)
if total_points < 50:
raise ValueError(f"Datos insuficientes para {ticker}")
return gr.Slider.update(
maximum=total_points,
value=min(1000, total_points),
minimum=50,
step=1,
interactive=True
)
except Exception as e:
print(f"Error al actualizar datos para {ticker}: {str(e)}")
return gr.Slider.update(value=1000, maximum=5000, minimum=50, step=1)
# Interfaz de Gradio
with gr.Blocks() as demo:
gr.Markdown("# Aplicaci贸n de Predicci贸n de Precios de Acciones")
with gr.Row():
with gr.Column(scale=1):
ticker = gr.Dropdown(
choices=get_popular_tickers(),
value="AAPL",
label="Selecciona el S铆mbolo de la Acci贸n",
interactive=True
)
with gr.Column():
train_data_points = gr.Slider(
minimum=50,
maximum=5000,
value=1000,
step=1,
label="N煤mero de Datos para Entrenamiento",
interactive=True
)
prediction_days = gr.Slider(
minimum=1,
maximum=60,
value=5,
step=1,
label="N煤mero de D铆as a Predecir",
interactive=True
)
predict_btn = gr.Button("Predecir", interactive=True)
with gr.Column():
error_output = gr.Textbox(label="Estado", visible=False)
plot_output = gr.Plot(label="Gr谩fico de Predicci贸n")
download_btn = gr.File(label="Descargar Predicciones")
# Eventos
ticker.change(
fn=update_train_data_points,
inputs=[ticker],
outputs=[train_data_points],
api_name="update_data"
)
predict_btn.click(
fn=predict_stock,
inputs=[ticker, train_data_points, prediction_days],
outputs=[plot_output, download_btn]
)
demo.launch() |