Spaces:
Build error
Build error
seemapatil
commited on
Commit
·
32f54f5
1
Parent(s):
b1270c4
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,16 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
# Read requirements.txt file
|
6 |
-
with open('requirements.txt', 'r') as req_file:
|
7 |
-
requirements = req_file.read().splitlines
|
8 |
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
# Load and preprocess the IMDB dataset from CSV
|
14 |
-
preprocessed_data = []
|
15 |
-
with open('IMDB Dataset.csv', 'r') as csv_file:
|
16 |
-
csv_reader = csv.DictReader(csv_file)
|
17 |
-
for row in csv_reader:
|
18 |
-
text = row['review']
|
19 |
-
label = row['sentiment']
|
20 |
-
preprocessed_entry = {
|
21 |
-
'text': text,
|
22 |
-
'label': label
|
23 |
-
}
|
24 |
-
preprocessed_data.append(preprocessed_entry)
|
25 |
|
26 |
-
# Convert the preprocessed data to a pandas DataFrame
|
27 |
-
df = pandas.DataFrame(preprocessed_data)
|
28 |
|
29 |
-
# Convert the DataFrame to a datasets dataset
|
30 |
-
dataset = Dataset.from_pandas(df)
|
31 |
-
|
32 |
-
# Tokenize the dataset
|
33 |
-
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
|
34 |
-
def tokenize_function(examples):
|
35 |
-
return tokenizer(examples["text"], padding="max_length", truncation=True)
|
36 |
-
|
37 |
-
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
38 |
-
|
39 |
-
# Fine-tune the Bloom model
|
40 |
-
model = AutoModelForSequenceClassification.from_pretrained("bigscience/bloom-560m", num_labels=2)
|
41 |
-
|
42 |
-
training_args = TrainingArguments(output_dir="test_trainer")
|
43 |
-
|
44 |
-
import numpy as np
|
45 |
-
import evaluate
|
46 |
-
|
47 |
-
metric = evaluate.load("accuracy")
|
48 |
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
pipe = pipeline ('sentiment-analysis')
|
5 |
+
text = st.text_area('enter some text!')
|
6 |
+
def predict_sentiment(text):
|
7 |
+
result = pipe(text)[0]
|
8 |
+
return result['label']
|
9 |
|
|
|
|
|
|
|
10 |
|
11 |
+
iface = gr.Interface(fn=predict_sentiment, inputs="text", outputs="text")
|
12 |
+
iface.launch()
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|