seemapatil commited on
Commit
32f54f5
·
1 Parent(s): b1270c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -42
app.py CHANGED
@@ -1,48 +1,16 @@
1
- from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments
2
- from datasets import pandas, Dataset
3
- import csv
 
 
 
 
 
4
 
5
- # Read requirements.txt file
6
- with open('requirements.txt', 'r') as req_file:
7
- requirements = req_file.read().splitlines
8
 
9
- for requirement in requirements:
10
- ('pip install --use-feature=build-backend')
11
 
12
-
13
- # Load and preprocess the IMDB dataset from CSV
14
- preprocessed_data = []
15
- with open('IMDB Dataset.csv', 'r') as csv_file:
16
- csv_reader = csv.DictReader(csv_file)
17
- for row in csv_reader:
18
- text = row['review']
19
- label = row['sentiment']
20
- preprocessed_entry = {
21
- 'text': text,
22
- 'label': label
23
- }
24
- preprocessed_data.append(preprocessed_entry)
25
 
26
- # Convert the preprocessed data to a pandas DataFrame
27
- df = pandas.DataFrame(preprocessed_data)
28
 
29
- # Convert the DataFrame to a datasets dataset
30
- dataset = Dataset.from_pandas(df)
31
-
32
- # Tokenize the dataset
33
- tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
34
- def tokenize_function(examples):
35
- return tokenizer(examples["text"], padding="max_length", truncation=True)
36
-
37
- tokenized_datasets = dataset.map(tokenize_function, batched=True)
38
-
39
- # Fine-tune the Bloom model
40
- model = AutoModelForSequenceClassification.from_pretrained("bigscience/bloom-560m", num_labels=2)
41
-
42
- training_args = TrainingArguments(output_dir="test_trainer")
43
-
44
- import numpy as np
45
- import evaluate
46
-
47
- metric = evaluate.load("accuracy")
48
 
 
1
+ import streamlit as st
2
+ import gradio as gr
3
+ from transformers import pipeline
4
+ pipe = pipeline ('sentiment-analysis')
5
+ text = st.text_area('enter some text!')
6
+ def predict_sentiment(text):
7
+ result = pipe(text)[0]
8
+ return result['label']
9
 
 
 
 
10
 
11
+ iface = gr.Interface(fn=predict_sentiment, inputs="text", outputs="text")
12
+ iface.launch()
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
 
 
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16