File size: 13,207 Bytes
4a582ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
from collections import deque, defaultdict
import pickle
import shutil

import numpy as np
import paddle
import paddle.nn.functional as F
from paddleseg.utils import TimeAverager, calculate_eta, resume, logger

from .val import evaluate


def visual_in_traning(log_writer, vis_dict, step):
    """
    Visual in vdl

    Args:
        log_writer (LogWriter): The log writer of vdl.
        vis_dict (dict): Dict of tensor. The shape of thesor is (C, H, W)
    """
    for key, value in vis_dict.items():
        value_shape = value.shape
        if value_shape[0] not in [1, 3]:
            value = value[0]
            value = value.unsqueeze(0)
        value = paddle.transpose(value, (1, 2, 0))
        min_v = paddle.min(value)
        max_v = paddle.max(value)
        if (min_v > 0) and (max_v < 1):
            value = value * 255
        elif (min_v < 0 and min_v >= -1) and (max_v <= 1):
            value = (1 + value) / 2 * 255
        else:
            value = (value - min_v) / (max_v - min_v) * 255

        value = value.astype('uint8')
        value = value.numpy()
        log_writer.add_image(tag=key, img=value, step=step)


def save_best(best_model_dir, metrics_data, iter):
    with open(os.path.join(best_model_dir, 'best_metrics.txt'), 'w') as f:
        for key, value in metrics_data.items():
            line = key + ' ' + str(value) + '\n'
            f.write(line)
        f.write('iter' + ' ' + str(iter) + '\n')


def get_best(best_file, metrics, resume_model=None):
    '''Get best metrics and iter from file'''
    best_metrics_data = {}
    if os.path.exists(best_file) and (resume_model is not None):
        values = []
        with open(best_file, 'r') as f:
            lines = f.readlines()
            for line in lines:
                line = line.strip()
                key, value = line.split(' ')
                best_metrics_data[key] = eval(value)
                if key == 'iter':
                    best_iter = eval(value)
    else:
        for key in metrics:
            best_metrics_data[key] = np.inf
        best_iter = -1
    return best_metrics_data, best_iter


def train(model,
          train_dataset,
          val_dataset=None,
          optimizer=None,
          save_dir='output',
          iters=10000,
          batch_size=2,
          resume_model=None,
          save_interval=1000,
          log_iters=10,
          log_image_iters=1000,
          num_workers=0,
          use_vdl=False,
          losses=None,
          keep_checkpoint_max=5,
          eval_begin_iters=None,
          metrics='sad'):
    """
    Launch training.
    Args:
        model(nn.Layer): A matting model.
        train_dataset (paddle.io.Dataset): Used to read and process training datasets.
        val_dataset (paddle.io.Dataset, optional): Used to read and process validation datasets.
        optimizer (paddle.optimizer.Optimizer): The optimizer.
        save_dir (str, optional): The directory for saving the model snapshot. Default: 'output'.
        iters (int, optional): How may iters to train the model. Defualt: 10000.
        batch_size (int, optional): Mini batch size of one gpu or cpu. Default: 2.
        resume_model (str, optional): The path of resume model.
        save_interval (int, optional): How many iters to save a model snapshot once during training. Default: 1000.
        log_iters (int, optional): Display logging information at every log_iters. Default: 10.
        log_image_iters (int, optional): Log image to vdl. Default: 1000.
        num_workers (int, optional): Num workers for data loader. Default: 0.
        use_vdl (bool, optional): Whether to record the data to VisualDL during training. Default: False.
        losses (dict, optional): A dict of loss, refer to the loss function of the model for details. Default: None.
        keep_checkpoint_max (int, optional): Maximum number of checkpoints to save. Default: 5.
        eval_begin_iters (int): The iters begin evaluation. It will evaluate at iters/2 if it is None. Defalust: None.
        metrics(str|list, optional): The metrics to evaluate, it may be the combination of ("sad", "mse", "grad", "conn"). 
    """
    model.train()
    nranks = paddle.distributed.ParallelEnv().nranks
    local_rank = paddle.distributed.ParallelEnv().local_rank

    start_iter = 0
    if resume_model is not None:
        start_iter = resume(model, optimizer, resume_model)

    if not os.path.isdir(save_dir):
        if os.path.exists(save_dir):
            os.remove(save_dir)
        os.makedirs(save_dir)

    if nranks > 1:
        # Initialize parallel environment if not done.
        if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
        ):
            paddle.distributed.init_parallel_env()
            ddp_model = paddle.DataParallel(model)
        else:
            ddp_model = paddle.DataParallel(model)

    batch_sampler = paddle.io.DistributedBatchSampler(
        train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)

    loader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=batch_sampler,
        num_workers=num_workers,
        return_list=True, )

    if use_vdl:
        from visualdl import LogWriter
        log_writer = LogWriter(save_dir)

    if isinstance(metrics, str):
        metrics = [metrics]
    elif not isinstance(metrics, list):
        metrics = ['sad']
    best_metrics_data, best_iter = get_best(
        os.path.join(save_dir, 'best_model', 'best_metrics.txt'),
        metrics,
        resume_model=resume_model)
    avg_loss = defaultdict(float)
    iters_per_epoch = len(batch_sampler)
    reader_cost_averager = TimeAverager()
    batch_cost_averager = TimeAverager()
    save_models = deque()
    batch_start = time.time()

    iter = start_iter
    while iter < iters:
        for data in loader:
            iter += 1
            if iter > iters:
                break
            reader_cost_averager.record(time.time() - batch_start)

            logit_dict, loss_dict = ddp_model(data) if nranks > 1 else model(
                data)

            loss_dict['all'].backward()

            optimizer.step()
            lr = optimizer.get_lr()
            if isinstance(optimizer._learning_rate,
                          paddle.optimizer.lr.LRScheduler):
                optimizer._learning_rate.step()
            model.clear_gradients()

            for key, value in loss_dict.items():
                avg_loss[key] += value.numpy()[0]
            batch_cost_averager.record(
                time.time() - batch_start, num_samples=batch_size)

            if (iter) % log_iters == 0 and local_rank == 0:
                for key, value in avg_loss.items():
                    avg_loss[key] = value / log_iters
                remain_iters = iters - iter
                avg_train_batch_cost = batch_cost_averager.get_average()
                avg_train_reader_cost = reader_cost_averager.get_average()
                eta = calculate_eta(remain_iters, avg_train_batch_cost)
                # loss info
                loss_str = ' ' * 26 + '\t[LOSSES]'
                loss_str = loss_str
                for key, value in avg_loss.items():
                    if key != 'all':
                        loss_str = loss_str + ' ' + key + '={:.4f}'.format(
                            value)
                logger.info(
                    "[TRAIN] epoch={}, iter={}/{}, loss={:.4f}, lr={:.6f}, batch_cost={:.4f}, reader_cost={:.5f}, ips={:.4f} samples/sec | ETA {}\n{}\n"
                    .format((iter - 1) // iters_per_epoch + 1, iter, iters,
                            avg_loss['all'], lr, avg_train_batch_cost,
                            avg_train_reader_cost,
                            batch_cost_averager.get_ips_average(
                            ), eta, loss_str))
                if use_vdl:
                    for key, value in avg_loss.items():
                        log_tag = 'Train/' + key
                        log_writer.add_scalar(log_tag, value, iter)

                    log_writer.add_scalar('Train/lr', lr, iter)
                    log_writer.add_scalar('Train/batch_cost',
                                          avg_train_batch_cost, iter)
                    log_writer.add_scalar('Train/reader_cost',
                                          avg_train_reader_cost, iter)
                    if iter % log_image_iters == 0:
                        vis_dict = {}
                        # ground truth
                        vis_dict['ground truth/img'] = data['img'][0]
                        for key in data['gt_fields']:
                            key = key[0]
                            vis_dict['/'.join(['ground truth', key])] = data[
                                key][0]
                        # predict
                        for key, value in logit_dict.items():
                            vis_dict['/'.join(['predict', key])] = logit_dict[
                                key][0]
                        visual_in_traning(
                            log_writer=log_writer, vis_dict=vis_dict, step=iter)

                for key in avg_loss.keys():
                    avg_loss[key] = 0.
                reader_cost_averager.reset()
                batch_cost_averager.reset()

            # save model
            if (iter % save_interval == 0 or iter == iters) and local_rank == 0:
                current_save_dir = os.path.join(save_dir,
                                                "iter_{}".format(iter))
                if not os.path.isdir(current_save_dir):
                    os.makedirs(current_save_dir)
                paddle.save(model.state_dict(),
                            os.path.join(current_save_dir, 'model.pdparams'))
                paddle.save(optimizer.state_dict(),
                            os.path.join(current_save_dir, 'model.pdopt'))
                save_models.append(current_save_dir)
                if len(save_models) > keep_checkpoint_max > 0:
                    model_to_remove = save_models.popleft()
                    shutil.rmtree(model_to_remove)

            # eval model
            if eval_begin_iters is None:
                eval_begin_iters = iters // 2
            if (iter % save_interval == 0 or iter == iters) and (
                    val_dataset is not None
            ) and local_rank == 0 and iter >= eval_begin_iters:
                num_workers = 1 if num_workers > 0 else 0
                metrics_data = evaluate(
                    model,
                    val_dataset,
                    num_workers=1,
                    print_detail=True,
                    save_results=False,
                    metrics=metrics)
                model.train()

            # save best model and add evaluation results to vdl
            if (iter % save_interval == 0 or iter == iters) and local_rank == 0:
                if val_dataset is not None and iter >= eval_begin_iters:
                    if metrics_data[metrics[0]] < best_metrics_data[metrics[0]]:
                        best_iter = iter
                        best_metrics_data = metrics_data.copy()
                        best_model_dir = os.path.join(save_dir, "best_model")
                        paddle.save(
                            model.state_dict(),
                            os.path.join(best_model_dir, 'model.pdparams'))
                        save_best(best_model_dir, best_metrics_data, iter)

                    show_list = []
                    for key, value in best_metrics_data.items():
                        show_list.append((key, value))
                    log_str = '[EVAL] The model with the best validation {} ({:.4f}) was saved at iter {}.'.format(
                        show_list[0][0], show_list[0][1], best_iter)
                    if len(show_list) > 1:
                        log_str += " While"
                        for i in range(1, len(show_list)):
                            log_str = log_str + ' {}: {:.4f},'.format(
                                show_list[i][0], show_list[i][1])
                        log_str = log_str[:-1]
                    logger.info(log_str)

                    if use_vdl:
                        for key, value in metrics_data.items():
                            log_writer.add_scalar('Evaluate/' + key, value,
                                                  iter)

            batch_start = time.time()

    # Sleep for half a second to let dataloader release resources.
    time.sleep(0.5)
    if use_vdl:
        log_writer.close()