Spaces:
Running
Running
File size: 27,939 Bytes
4a582ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 |
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import string
import cv2
import numpy as np
from paddleseg.transforms import functional
from paddleseg.cvlibs import manager
from paddleseg.utils import seg_env
from PIL import Image
@manager.TRANSFORMS.add_component
class Compose:
"""
Do transformation on input data with corresponding pre-processing and augmentation operations.
The shape of input data to all operations is [height, width, channels].
"""
def __init__(self, transforms, to_rgb=True):
if not isinstance(transforms, list):
raise TypeError('The transforms must be a list!')
self.transforms = transforms
self.to_rgb = to_rgb
def __call__(self, data):
"""
Args:
data (dict): The data to transform.
Returns:
dict: Data after transformation
"""
if 'trans_info' not in data:
data['trans_info'] = []
for op in self.transforms:
data = op(data)
if data is None:
return None
data['img'] = np.transpose(data['img'], (2, 0, 1))
for key in data.get('gt_fields', []):
if len(data[key].shape) == 2:
continue
data[key] = np.transpose(data[key], (2, 0, 1))
return data
@manager.TRANSFORMS.add_component
class LoadImages:
def __init__(self, to_rgb=False):
self.to_rgb = to_rgb
def __call__(self, data):
if isinstance(data['img'], str):
data['img'] = cv2.imread(data['img'])
for key in data.get('gt_fields', []):
if isinstance(data[key], str):
data[key] = cv2.imread(data[key], cv2.IMREAD_UNCHANGED)
# if alpha and trimap has 3 channels, extract one.
if key in ['alpha', 'trimap']:
if len(data[key].shape) > 2:
data[key] = data[key][:, :, 0]
if self.to_rgb:
data['img'] = cv2.cvtColor(data['img'], cv2.COLOR_BGR2RGB)
for key in data.get('gt_fields', []):
if len(data[key].shape) == 2:
continue
data[key] = cv2.cvtColor(data[key], cv2.COLOR_BGR2RGB)
return data
@manager.TRANSFORMS.add_component
class Resize:
def __init__(self, target_size=(512, 512), random_interp=False):
if isinstance(target_size, list) or isinstance(target_size, tuple):
if len(target_size) != 2:
raise ValueError(
'`target_size` should include 2 elements, but it is {}'.
format(target_size))
else:
raise TypeError(
"Type of `target_size` is invalid. It should be list or tuple, but it is {}"
.format(type(target_size)))
self.target_size = target_size
self.random_interp = random_interp
self.interps = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC]
def __call__(self, data):
if self.random_interp:
interp = np.random.choice(self.interps)
else:
interp = cv2.INTER_LINEAR
data['trans_info'].append(('resize', data['img'].shape[0:2]))
data['img'] = functional.resize(data['img'], self.target_size, interp)
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize(data[key], self.target_size,
cv2.INTER_NEAREST)
else:
data[key] = functional.resize(data[key], self.target_size,
interp)
return data
@manager.TRANSFORMS.add_component
class RandomResize:
"""
Resize image to a size determinned by `scale` and `size`.
Args:
size(tuple|list): The reference size to resize. A tuple or list with length 2.
scale(tupel|list, optional): A range of scale base on `size`. A tuple or list with length 2. Default: None.
"""
def __init__(self, size=None, scale=None):
if isinstance(size, list) or isinstance(size, tuple):
if len(size) != 2:
raise ValueError(
'`size` should include 2 elements, but it is {}'.format(
size))
elif size is not None:
raise TypeError(
"Type of `size` is invalid. It should be list or tuple, but it is {}"
.format(type(size)))
if scale is not None:
if isinstance(scale, list) or isinstance(scale, tuple):
if len(scale) != 2:
raise ValueError(
'`scale` should include 2 elements, but it is {}'.
format(scale))
else:
raise TypeError(
"Type of `scale` is invalid. It should be list or tuple, but it is {}"
.format(type(scale)))
self.size = size
self.scale = scale
def __call__(self, data):
h, w = data['img'].shape[:2]
if self.scale is not None:
scale = np.random.uniform(self.scale[0], self.scale[1])
else:
scale = 1.
if self.size is not None:
scale_factor = max(self.size[0] / w, self.size[1] / h)
else:
scale_factor = 1
scale = scale * scale_factor
w = int(round(w * scale))
h = int(round(h * scale))
data['img'] = functional.resize(data['img'], (w, h))
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize(data[key], (w, h),
cv2.INTER_NEAREST)
else:
data[key] = functional.resize(data[key], (w, h))
return data
@manager.TRANSFORMS.add_component
class ResizeByLong:
"""
Resize the long side of an image to given size, and then scale the other side proportionally.
Args:
long_size (int): The target size of long side.
"""
def __init__(self, long_size):
self.long_size = long_size
def __call__(self, data):
data['trans_info'].append(('resize', data['img'].shape[0:2]))
data['img'] = functional.resize_long(data['img'], self.long_size)
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize_long(data[key], self.long_size,
cv2.INTER_NEAREST)
else:
data[key] = functional.resize_long(data[key], self.long_size)
return data
@manager.TRANSFORMS.add_component
class ResizeByShort:
"""
Resize the short side of an image to given size, and then scale the other side proportionally.
Args:
short_size (int): The target size of short side.
"""
def __init__(self, short_size):
self.short_size = short_size
def __call__(self, data):
data['trans_info'].append(('resize', data['img'].shape[0:2]))
data['img'] = functional.resize_short(data['img'], self.short_size)
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize_short(data[key], self.short_size,
cv2.INTER_NEAREST)
else:
data[key] = functional.resize_short(data[key], self.short_size)
return data
@manager.TRANSFORMS.add_component
class ResizeToIntMult:
"""
Resize to some int muitple, d.g. 32.
"""
def __init__(self, mult_int=32):
self.mult_int = mult_int
def __call__(self, data):
data['trans_info'].append(('resize', data['img'].shape[0:2]))
h, w = data['img'].shape[0:2]
rw = w - w % self.mult_int
rh = h - h % self.mult_int
data['img'] = functional.resize(data['img'], (rw, rh))
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize(data[key], (rw, rh),
cv2.INTER_NEAREST)
else:
data[key] = functional.resize(data[key], (rw, rh))
return data
@manager.TRANSFORMS.add_component
class Normalize:
"""
Normalize an image.
Args:
mean (list, optional): The mean value of a data set. Default: [0.5, 0.5, 0.5].
std (list, optional): The standard deviation of a data set. Default: [0.5, 0.5, 0.5].
Raises:
ValueError: When mean/std is not list or any value in std is 0.
"""
def __init__(self, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)):
self.mean = mean
self.std = std
if not (isinstance(self.mean,
(list, tuple)) and isinstance(self.std,
(list, tuple))):
raise ValueError(
"{}: input type is invalid. It should be list or tuple".format(
self))
from functools import reduce
if reduce(lambda x, y: x * y, self.std) == 0:
raise ValueError('{}: std is invalid!'.format(self))
def __call__(self, data):
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
data['img'] = functional.normalize(data['img'], mean, std)
if 'fg' in data.get('gt_fields', []):
data['fg'] = functional.normalize(data['fg'], mean, std)
if 'bg' in data.get('gt_fields', []):
data['bg'] = functional.normalize(data['bg'], mean, std)
return data
@manager.TRANSFORMS.add_component
class RandomCropByAlpha:
"""
Randomly crop while centered on uncertain area by a certain probability.
Args:
crop_size (tuple|list): The size you want to crop from image.
p (float): The probability centered on uncertain area.
"""
def __init__(self, crop_size=((320, 320), (480, 480), (640, 640)),
prob=0.5):
self.crop_size = crop_size
self.prob = prob
def __call__(self, data):
idex = np.random.randint(low=0, high=len(self.crop_size))
crop_w, crop_h = self.crop_size[idex]
img_h = data['img'].shape[0]
img_w = data['img'].shape[1]
if np.random.rand() < self.prob:
crop_center = np.where((data['alpha'] > 0) & (data['alpha'] < 255))
center_h_array, center_w_array = crop_center
if len(center_h_array) == 0:
return data
rand_ind = np.random.randint(len(center_h_array))
center_h = center_h_array[rand_ind]
center_w = center_w_array[rand_ind]
delta_h = crop_h // 2
delta_w = crop_w // 2
start_h = max(0, center_h - delta_h)
start_w = max(0, center_w - delta_w)
else:
start_h = 0
start_w = 0
if img_h > crop_h:
start_h = np.random.randint(img_h - crop_h + 1)
if img_w > crop_w:
start_w = np.random.randint(img_w - crop_w + 1)
end_h = min(img_h, start_h + crop_h)
end_w = min(img_w, start_w + crop_w)
data['img'] = data['img'][start_h:end_h, start_w:end_w]
for key in data.get('gt_fields', []):
data[key] = data[key][start_h:end_h, start_w:end_w]
return data
@manager.TRANSFORMS.add_component
class RandomCrop:
"""
Randomly crop
Args:
crop_size (tuple|list): The size you want to crop from image.
"""
def __init__(self, crop_size=((320, 320), (480, 480), (640, 640))):
if not isinstance(crop_size[0], (list, tuple)):
crop_size = [crop_size]
self.crop_size = crop_size
def __call__(self, data):
idex = np.random.randint(low=0, high=len(self.crop_size))
crop_w, crop_h = self.crop_size[idex]
img_h, img_w = data['img'].shape[0:2]
start_h = 0
start_w = 0
if img_h > crop_h:
start_h = np.random.randint(img_h - crop_h + 1)
if img_w > crop_w:
start_w = np.random.randint(img_w - crop_w + 1)
end_h = min(img_h, start_h + crop_h)
end_w = min(img_w, start_w + crop_w)
data['img'] = data['img'][start_h:end_h, start_w:end_w]
for key in data.get('gt_fields', []):
data[key] = data[key][start_h:end_h, start_w:end_w]
return data
@manager.TRANSFORMS.add_component
class LimitLong:
"""
Limit the long edge of image.
If the long edge is larger than max_long, resize the long edge
to max_long, while scale the short edge proportionally.
If the long edge is smaller than min_long, resize the long edge
to min_long, while scale the short edge proportionally.
Args:
max_long (int, optional): If the long edge of image is larger than max_long,
it will be resize to max_long. Default: None.
min_long (int, optional): If the long edge of image is smaller than min_long,
it will be resize to min_long. Default: None.
"""
def __init__(self, max_long=None, min_long=None):
if max_long is not None:
if not isinstance(max_long, int):
raise TypeError(
"Type of `max_long` is invalid. It should be int, but it is {}"
.format(type(max_long)))
if min_long is not None:
if not isinstance(min_long, int):
raise TypeError(
"Type of `min_long` is invalid. It should be int, but it is {}"
.format(type(min_long)))
if (max_long is not None) and (min_long is not None):
if min_long > max_long:
raise ValueError(
'`max_long should not smaller than min_long, but they are {} and {}'
.format(max_long, min_long))
self.max_long = max_long
self.min_long = min_long
def __call__(self, data):
h, w = data['img'].shape[:2]
long_edge = max(h, w)
target = long_edge
if (self.max_long is not None) and (long_edge > self.max_long):
target = self.max_long
elif (self.min_long is not None) and (long_edge < self.min_long):
target = self.min_long
data['trans_info'].append(('resize', data['img'].shape[0:2]))
if target != long_edge:
data['img'] = functional.resize_long(data['img'], target)
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize_long(data[key], target,
cv2.INTER_NEAREST)
else:
data[key] = functional.resize_long(data[key], target)
return data
@manager.TRANSFORMS.add_component
class LimitShort:
"""
Limit the short edge of image.
If the short edge is larger than max_short, resize the short edge
to max_short, while scale the long edge proportionally.
If the short edge is smaller than min_short, resize the short edge
to min_short, while scale the long edge proportionally.
Args:
max_short (int, optional): If the short edge of image is larger than max_short,
it will be resize to max_short. Default: None.
min_short (int, optional): If the short edge of image is smaller than min_short,
it will be resize to min_short. Default: None.
"""
def __init__(self, max_short=None, min_short=None):
if max_short is not None:
if not isinstance(max_short, int):
raise TypeError(
"Type of `max_short` is invalid. It should be int, but it is {}"
.format(type(max_short)))
if min_short is not None:
if not isinstance(min_short, int):
raise TypeError(
"Type of `min_short` is invalid. It should be int, but it is {}"
.format(type(min_short)))
if (max_short is not None) and (min_short is not None):
if min_short > max_short:
raise ValueError(
'`max_short should not smaller than min_short, but they are {} and {}'
.format(max_short, min_short))
self.max_short = max_short
self.min_short = min_short
def __call__(self, data):
h, w = data['img'].shape[:2]
short_edge = min(h, w)
target = short_edge
if (self.max_short is not None) and (short_edge > self.max_short):
target = self.max_short
elif (self.min_short is not None) and (short_edge < self.min_short):
target = self.min_short
data['trans_info'].append(('resize', data['img'].shape[0:2]))
if target != short_edge:
data['img'] = functional.resize_short(data['img'], target)
for key in data.get('gt_fields', []):
if key == 'trimap':
data[key] = functional.resize_short(data[key], target,
cv2.INTER_NEAREST)
else:
data[key] = functional.resize_short(data[key], target)
return data
@manager.TRANSFORMS.add_component
class RandomHorizontalFlip:
"""
Flip an image horizontally with a certain probability.
Args:
prob (float, optional): A probability of horizontally flipping. Default: 0.5.
"""
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, data):
if random.random() < self.prob:
data['img'] = functional.horizontal_flip(data['img'])
for key in data.get('gt_fields', []):
data[key] = functional.horizontal_flip(data[key])
return data
@manager.TRANSFORMS.add_component
class RandomBlur:
"""
Blurring an image by a Gaussian function with a certain probability.
Args:
prob (float, optional): A probability of blurring an image. Default: 0.1.
"""
def __init__(self, prob=0.1):
self.prob = prob
def __call__(self, data):
if self.prob <= 0:
n = 0
elif self.prob >= 1:
n = 1
else:
n = int(1.0 / self.prob)
if n > 0:
if np.random.randint(0, n) == 0:
radius = np.random.randint(3, 10)
if radius % 2 != 1:
radius = radius + 1
if radius > 9:
radius = 9
data['img'] = cv2.GaussianBlur(data['img'], (radius, radius), 0,
0)
for key in data.get('gt_fields', []):
if key == 'trimap':
continue
data[key] = cv2.GaussianBlur(data[key], (radius, radius), 0,
0)
return data
@manager.TRANSFORMS.add_component
class RandomDistort:
"""
Distort an image with random configurations.
Args:
brightness_range (float, optional): A range of brightness. Default: 0.5.
brightness_prob (float, optional): A probability of adjusting brightness. Default: 0.5.
contrast_range (float, optional): A range of contrast. Default: 0.5.
contrast_prob (float, optional): A probability of adjusting contrast. Default: 0.5.
saturation_range (float, optional): A range of saturation. Default: 0.5.
saturation_prob (float, optional): A probability of adjusting saturation. Default: 0.5.
hue_range (int, optional): A range of hue. Default: 18.
hue_prob (float, optional): A probability of adjusting hue. Default: 0.5.
"""
def __init__(self,
brightness_range=0.5,
brightness_prob=0.5,
contrast_range=0.5,
contrast_prob=0.5,
saturation_range=0.5,
saturation_prob=0.5,
hue_range=18,
hue_prob=0.5):
self.brightness_range = brightness_range
self.brightness_prob = brightness_prob
self.contrast_range = contrast_range
self.contrast_prob = contrast_prob
self.saturation_range = saturation_range
self.saturation_prob = saturation_prob
self.hue_range = hue_range
self.hue_prob = hue_prob
def __call__(self, data):
brightness_lower = 1 - self.brightness_range
brightness_upper = 1 + self.brightness_range
contrast_lower = 1 - self.contrast_range
contrast_upper = 1 + self.contrast_range
saturation_lower = 1 - self.saturation_range
saturation_upper = 1 + self.saturation_range
hue_lower = -self.hue_range
hue_upper = self.hue_range
ops = [
functional.brightness, functional.contrast, functional.saturation,
functional.hue
]
random.shuffle(ops)
params_dict = {
'brightness': {
'brightness_lower': brightness_lower,
'brightness_upper': brightness_upper
},
'contrast': {
'contrast_lower': contrast_lower,
'contrast_upper': contrast_upper
},
'saturation': {
'saturation_lower': saturation_lower,
'saturation_upper': saturation_upper
},
'hue': {
'hue_lower': hue_lower,
'hue_upper': hue_upper
}
}
prob_dict = {
'brightness': self.brightness_prob,
'contrast': self.contrast_prob,
'saturation': self.saturation_prob,
'hue': self.hue_prob
}
im = data['img'].astype('uint8')
im = Image.fromarray(im)
for id in range(len(ops)):
params = params_dict[ops[id].__name__]
params['im'] = im
prob = prob_dict[ops[id].__name__]
if np.random.uniform(0, 1) < prob:
im = ops[id](**params)
data['img'] = np.asarray(im)
for key in data.get('gt_fields', []):
if key in ['alpha', 'trimap']:
continue
else:
im = data[key].astype('uint8')
im = Image.fromarray(im)
for id in range(len(ops)):
params = params_dict[ops[id].__name__]
params['im'] = im
prob = prob_dict[ops[id].__name__]
if np.random.uniform(0, 1) < prob:
im = ops[id](**params)
data[key] = np.asarray(im)
return data
@manager.TRANSFORMS.add_component
class Padding:
"""
Add bottom-right padding to a raw image or annotation image.
Args:
target_size (list|tuple): The target size after padding.
im_padding_value (list, optional): The padding value of raw image.
Default: [127.5, 127.5, 127.5].
label_padding_value (int, optional): The padding value of annotation image. Default: 255.
Raises:
TypeError: When target_size is neither list nor tuple.
ValueError: When the length of target_size is not 2.
"""
def __init__(self, target_size, im_padding_value=(127.5, 127.5, 127.5)):
if isinstance(target_size, list) or isinstance(target_size, tuple):
if len(target_size) != 2:
raise ValueError(
'`target_size` should include 2 elements, but it is {}'.
format(target_size))
else:
raise TypeError(
"Type of target_size is invalid. It should be list or tuple, now is {}"
.format(type(target_size)))
self.target_size = target_size
self.im_padding_value = im_padding_value
def __call__(self, data):
im_height, im_width = data['img'].shape[0], data['img'].shape[1]
target_height = self.target_size[1]
target_width = self.target_size[0]
pad_height = max(0, target_height - im_height)
pad_width = max(0, target_width - im_width)
data['trans_info'].append(('padding', data['img'].shape[0:2]))
if (pad_height == 0) and (pad_width == 0):
return data
else:
data['img'] = cv2.copyMakeBorder(
data['img'],
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=self.im_padding_value)
for key in data.get('gt_fields', []):
if key in ['trimap', 'alpha']:
value = 0
else:
value = self.im_padding_value
data[key] = cv2.copyMakeBorder(
data[key],
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=value)
return data
@manager.TRANSFORMS.add_component
class RandomSharpen:
def __init__(self, prob=0.1):
if prob < 0:
self.prob = 0
elif prob > 1:
self.prob = 1
else:
self.prob = prob
def __call__(self, data):
if np.random.rand() > self.prob:
return data
radius = np.random.choice([0, 3, 5, 7, 9])
w = np.random.uniform(0.1, 0.5)
blur_img = cv2.GaussianBlur(data['img'], (radius, radius), 5)
data['img'] = cv2.addWeighted(data['img'], 1 + w, blur_img, -w, 0)
for key in data.get('gt_fields', []):
if key == 'trimap' or key == 'alpha':
continue
blur_img = cv2.GaussianBlur(data[key], (0, 0), 5)
data[key] = cv2.addWeighted(data[key], 1.5, blur_img, -0.5, 0)
return data
@manager.TRANSFORMS.add_component
class RandomNoise:
def __init__(self, prob=0.1):
if prob < 0:
self.prob = 0
elif prob > 1:
self.prob = 1
else:
self.prob = prob
def __call__(self, data):
if np.random.rand() > self.prob:
return data
mean = np.random.uniform(0, 0.04)
var = np.random.uniform(0, 0.001)
noise = np.random.normal(mean, var**0.5, data['img'].shape) * 255
data['img'] = data['img'] + noise
data['img'] = np.clip(data['img'], 0, 255)
return data
@manager.TRANSFORMS.add_component
class RandomReJpeg:
def __init__(self, prob=0.1):
if prob < 0:
self.prob = 0
elif prob > 1:
self.prob = 1
else:
self.prob = prob
def __call__(self, data):
if np.random.rand() > self.prob:
return data
q = np.random.randint(70, 95)
img = data['img'].astype('uint8')
# Ensure no conflicts between processes
tmp_name = str(os.getpid()) + '.jpg'
tmp_name = os.path.join(seg_env.TMP_HOME, tmp_name)
cv2.imwrite(tmp_name, img, [int(cv2.IMWRITE_JPEG_QUALITY), q])
data['img'] = cv2.imread(tmp_name)
return data
|