File size: 6,229 Bytes
8749106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import nltk
nltk.download('punkt')
nltk.download('stopwords')

import math

from nltk import sent_tokenize, word_tokenize, PorterStemmer
from nltk.corpus import stopwords


def _create_frequency_table(text_string) -> dict:
    """
    we create a dictionary for the word frequency table.
    For this, we should only use the words that are not part of the stopWords array.
    Removing stop words and making frequency table
    Stemmer - an algorithm to bring words to its root word.
    :rtype: dict
    """
    stopWords = set(stopwords.words("english"))
    words = word_tokenize(text_string)
    ps = PorterStemmer()

    freqTable = dict()
    for word in words:
        word = ps.stem(word)
        if word in stopWords:
            continue
        if word in freqTable:
            freqTable[word] += 1
        else:
            freqTable[word] = 1

    return freqTable



def _create_frequency_matrix(sentences):
    frequency_matrix = {}
    stopWords = set(stopwords.words("english"))
    ps = PorterStemmer()

    for sent in sentences:
        freq_table = {}
        words = word_tokenize(sent)
        for word in words:
            word = word.lower()
            word = ps.stem(word)
            if word in stopWords:
                continue

            if word in freq_table:
                freq_table[word] += 1
            else:
                freq_table[word] = 1

        frequency_matrix[sent[:15]] = freq_table

    return frequency_matrix




def _create_tf_matrix(freq_matrix):
    tf_matrix = {}

    for sent, f_table in freq_matrix.items():
        tf_table = {}

        count_words_in_sentence = len(f_table)
        for word, count in f_table.items():
            tf_table[word] = count / count_words_in_sentence

        tf_matrix[sent] = tf_table

    return tf_matrix



def _create_documents_per_words(freq_matrix):
    word_per_doc_table = {}

    for sent, f_table in freq_matrix.items():
        for word, count in f_table.items():
            if word in word_per_doc_table:
                word_per_doc_table[word] += 1
            else:
                word_per_doc_table[word] = 1

    return word_per_doc_table


def _create_idf_matrix(freq_matrix, count_doc_per_words, total_documents):
    idf_matrix = {}

    for sent, f_table in freq_matrix.items():
        idf_table = {}

        for word in f_table.keys():
            idf_table[word] = math.log10(total_documents / float(count_doc_per_words[word]))

        idf_matrix[sent] = idf_table

    return idf_matrix



def _create_tf_idf_matrix(tf_matrix, idf_matrix):
    tf_idf_matrix = {}

    for (sent1, f_table1), (sent2, f_table2) in zip(tf_matrix.items(), idf_matrix.items()):

        tf_idf_table = {}

        for (word1, value1), (word2, value2) in zip(f_table1.items(),
                                                    f_table2.items()):  # here, keys are the same in both the table
            tf_idf_table[word1] = float(value1 * value2)

        tf_idf_matrix[sent1] = tf_idf_table

    return tf_idf_matrix


def _score_sentences(tf_idf_matrix) -> dict:
    """
    score a sentence by its word's TF
    Basic algorithm: adding the TF frequency of every non-stop word in a sentence divided by total no of words in a sentence.
    :rtype: dict
    """

    sentenceValue = {}

    for sent, f_table in tf_idf_matrix.items():
        total_score_per_sentence = 0

        count_words_in_sentence = len(f_table)
        for word, score in f_table.items():
            total_score_per_sentence += score

        sentenceValue[sent] = total_score_per_sentence / count_words_in_sentence

    return sentenceValue

def _find_average_score(sentenceValue) -> int:
    """
    Find the average score from the sentence value dictionary
    :rtype: int
    """
    sumValues = 0
    for entry in sentenceValue:
        sumValues += sentenceValue[entry]

    # Average value of a sentence from original summary_text
    average = (sumValues / len(sentenceValue))

    return average


def _generate_summary(sentences, sentenceValue, threshold):
    sentence_count = 0
    summary = ''

    for sentence in sentences:
        if sentence[:15] in sentenceValue and sentenceValue[sentence[:15]] >= (threshold):
            summary += " " + sentence
            sentence_count += 1

    return summary


def run_summarization(text):
    """
    :param text: Plain summary_text of long article
    :return: summarized summary_text
    """

    '''
    We already have a sentence tokenizer, so we just need 
    to run the sent_tokenize() method to create the array of sentences.
    '''
    # 1 Sentence Tokenize
    sentences = sent_tokenize(text)
    total_documents = len(sentences)
    #print(sentences)

    # 2 Create the Frequency matrix of the words in each sentence.
    freq_matrix = _create_frequency_matrix(sentences)
    #print(freq_matrix)

    '''
    Term frequency (TF) is how often a word appears in a document, divided by how many words are there in a document.
    '''
    # 3 Calculate TermFrequency and generate a matrix
    tf_matrix = _create_tf_matrix(freq_matrix)
    #print(tf_matrix)

    # 4 creating table for documents per words
    count_doc_per_words = _create_documents_per_words(freq_matrix)
    #print(count_doc_per_words)

    '''
    Inverse document frequency (IDF) is how unique or rare a word is.
    '''
    # 5 Calculate IDF and generate a matrix
    idf_matrix = _create_idf_matrix(freq_matrix, count_doc_per_words, total_documents)
    #print(idf_matrix)

    # 6 Calculate TF-IDF and generate a matrix
    tf_idf_matrix = _create_tf_idf_matrix(tf_matrix, idf_matrix)
    #print(tf_idf_matrix)

    # 7 Important Algorithm: score the sentences
    sentence_scores = _score_sentences(tf_idf_matrix)
    #print(sentence_scores)

    # 8 Find the threshold
    threshold = _find_average_score(sentence_scores)
    #print(threshold)

    # 9 Important Algorithm: Generate the summary
    summary = _generate_summary(sentences, sentence_scores, 1.3 * threshold)
    return summary



#usage  = run_summarization(text_str)










# def text_summarize(ARTICLE, maxLength, minLength):
#   output = summarizer(ARTICLE)[0]['summary_text']
#   ans = text_paraphrase(output)
#   return ans