Spaces:
Runtime error
Runtime error
Tobias Cornille
commited on
Commit
·
9d95507
1
Parent(s):
d738b86
Fix device
Browse files- app.py +11 -31
- requirements.txt +3 -2
app.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
import subprocess, os, sys
|
2 |
|
3 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
4 |
-
|
5 |
result = subprocess.run(["pip", "install", "-e", "GroundingDINO"], check=True)
|
6 |
print(f"pip install GroundingDINO = {result}")
|
7 |
|
@@ -55,20 +53,8 @@ from segment_anything import build_sam, SamPredictor
|
|
55 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
56 |
|
57 |
|
58 |
-
def
|
59 |
-
|
60 |
-
|
61 |
-
if cuda.is_available():
|
62 |
-
device = "cuda:0" # cuda.get_current_device()
|
63 |
-
else:
|
64 |
-
device = "cpu"
|
65 |
-
return device
|
66 |
-
|
67 |
-
|
68 |
-
def load_model_hf(repo_id, filename, ckpt_config_filename, device="cpu"):
|
69 |
-
cache_config_file = hf_hub_download(repo_id=repo_id, filename=ckpt_config_filename)
|
70 |
-
|
71 |
-
args = SLConfig.fromfile(cache_config_file)
|
72 |
model = build_model(args)
|
73 |
args.device = device
|
74 |
|
@@ -298,17 +284,13 @@ def generate_panoptic_mask(
|
|
298 |
image = image.convert("RGB")
|
299 |
image_array = np.asarray(image)
|
300 |
|
301 |
-
groundingdino_device = "cpu"
|
302 |
if device != "cpu":
|
303 |
try:
|
304 |
from GroundingDINO.groundingdino import _C
|
305 |
-
|
306 |
-
groundingdino_device = "cuda:0"
|
307 |
except:
|
308 |
warnings.warn(
|
309 |
"Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!"
|
310 |
)
|
311 |
-
groundingdino_device = "cpu"
|
312 |
|
313 |
# detect boxes for "thing" categories using Grounding DINO
|
314 |
thing_boxes, _ = dino_detection(
|
@@ -319,7 +301,7 @@ def generate_panoptic_mask(
|
|
319 |
category_name_to_id,
|
320 |
dino_box_threshold,
|
321 |
dino_text_threshold,
|
322 |
-
|
323 |
)
|
324 |
# compute SAM image embedding
|
325 |
sam_predictor.set_image(image_array)
|
@@ -376,29 +358,27 @@ def generate_panoptic_mask(
|
|
376 |
return fig
|
377 |
|
378 |
|
|
|
379 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
380 |
-
ckpt_filename = "
|
381 |
-
ckpt_config_filename = "GroundingDINO_SwinB.cfg.py"
|
382 |
-
|
383 |
sam_checkpoint = "./sam_vit_h_4b8939.pth"
|
384 |
-
output_dir = "outputs"
|
385 |
-
device = "cuda"
|
386 |
-
|
387 |
-
device = get_device()
|
388 |
|
389 |
-
|
390 |
|
391 |
# initialize groundingdino model
|
392 |
-
dino_model = load_model_hf(ckpt_repo_id, ckpt_filename,
|
393 |
dino_model = dino_model.to(device)
|
394 |
|
395 |
# initialize SAM
|
396 |
-
|
|
|
|
|
397 |
|
398 |
clipseg_processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
399 |
clipseg_model = CLIPSegForImageSegmentation.from_pretrained(
|
400 |
"CIDAS/clipseg-rd64-refined"
|
401 |
)
|
|
|
402 |
|
403 |
|
404 |
if __name__ == "__main__":
|
|
|
1 |
import subprocess, os, sys
|
2 |
|
|
|
|
|
3 |
result = subprocess.run(["pip", "install", "-e", "GroundingDINO"], check=True)
|
4 |
print(f"pip install GroundingDINO = {result}")
|
5 |
|
|
|
53 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
54 |
|
55 |
|
56 |
+
def load_model_hf(model_config_path, repo_id, filename, device):
|
57 |
+
args = SLConfig.fromfile(model_config_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
model = build_model(args)
|
59 |
args.device = device
|
60 |
|
|
|
284 |
image = image.convert("RGB")
|
285 |
image_array = np.asarray(image)
|
286 |
|
|
|
287 |
if device != "cpu":
|
288 |
try:
|
289 |
from GroundingDINO.groundingdino import _C
|
|
|
|
|
290 |
except:
|
291 |
warnings.warn(
|
292 |
"Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!"
|
293 |
)
|
|
|
294 |
|
295 |
# detect boxes for "thing" categories using Grounding DINO
|
296 |
thing_boxes, _ = dino_detection(
|
|
|
301 |
category_name_to_id,
|
302 |
dino_box_threshold,
|
303 |
dino_text_threshold,
|
304 |
+
device,
|
305 |
)
|
306 |
# compute SAM image embedding
|
307 |
sam_predictor.set_image(image_array)
|
|
|
358 |
return fig
|
359 |
|
360 |
|
361 |
+
config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
362 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
363 |
+
ckpt_filename = "groundingdino_swint_ogc.pth"
|
|
|
|
|
364 |
sam_checkpoint = "./sam_vit_h_4b8939.pth"
|
|
|
|
|
|
|
|
|
365 |
|
366 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
367 |
|
368 |
# initialize groundingdino model
|
369 |
+
dino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filename, device)
|
370 |
dino_model = dino_model.to(device)
|
371 |
|
372 |
# initialize SAM
|
373 |
+
sam = build_sam(checkpoint=sam_checkpoint)
|
374 |
+
sam.to(device=device)
|
375 |
+
sam_predictor = SamPredictor(sam)
|
376 |
|
377 |
clipseg_processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
378 |
clipseg_model = CLIPSegForImageSegmentation.from_pretrained(
|
379 |
"CIDAS/clipseg-rd64-refined"
|
380 |
)
|
381 |
+
clipseg_model.to(device)
|
382 |
|
383 |
|
384 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
@@ -19,7 +19,8 @@ torch
|
|
19 |
torchvision
|
20 |
transformers
|
21 |
yapf
|
22 |
-
numba
|
23 |
segment_anything
|
24 |
scikit-image
|
25 |
-
segments-ai
|
|
|
|
|
|
19 |
torchvision
|
20 |
transformers
|
21 |
yapf
|
|
|
22 |
segment_anything
|
23 |
scikit-image
|
24 |
+
segments-ai
|
25 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
26 |
+
torch
|