Spaces:
Runtime error
Runtime error
Upload 30 files
Browse files- src/depth_pro.egg-info/PKG-INFO +111 -0
- src/depth_pro.egg-info/SOURCES.txt +28 -0
- src/depth_pro.egg-info/dependency_links.txt +1 -0
- src/depth_pro.egg-info/entry_points.txt +2 -0
- src/depth_pro.egg-info/requires.txt +6 -0
- src/depth_pro.egg-info/top_level.txt +1 -0
- src/depth_pro/__init__.py +5 -0
- src/depth_pro/__pycache__/__init__.cpython-39.pyc +0 -0
- src/depth_pro/__pycache__/depth_pro.cpython-39.pyc +0 -0
- src/depth_pro/__pycache__/utils.cpython-39.pyc +0 -0
- src/depth_pro/cli/__init__.py +4 -0
- src/depth_pro/cli/__pycache__/__init__.cpython-39.pyc +0 -0
- src/depth_pro/cli/__pycache__/run.cpython-39.pyc +0 -0
- src/depth_pro/cli/run.py +149 -0
- src/depth_pro/depth_pro.py +300 -0
- src/depth_pro/eval/boundary_metrics.py +332 -0
- src/depth_pro/eval/dis5k_sample_list.txt +200 -0
- src/depth_pro/network/__init__.py +2 -0
- src/depth_pro/network/__pycache__/__init__.cpython-39.pyc +0 -0
- src/depth_pro/network/__pycache__/decoder.cpython-39.pyc +0 -0
- src/depth_pro/network/__pycache__/encoder.cpython-39.pyc +0 -0
- src/depth_pro/network/__pycache__/fov.cpython-39.pyc +0 -0
- src/depth_pro/network/__pycache__/vit.cpython-39.pyc +0 -0
- src/depth_pro/network/__pycache__/vit_factory.cpython-39.pyc +0 -0
- src/depth_pro/network/decoder.py +206 -0
- src/depth_pro/network/encoder.py +332 -0
- src/depth_pro/network/fov.py +82 -0
- src/depth_pro/network/vit.py +123 -0
- src/depth_pro/network/vit_factory.py +124 -0
- src/depth_pro/utils.py +112 -0
src/depth_pro.egg-info/PKG-INFO
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: depth_pro
|
3 |
+
Version: 0.1
|
4 |
+
Summary: Inference/Network/Model code for Apple Depth Pro monocular depth estimation.
|
5 |
+
Project-URL: Homepage, https://github.com/apple/ml-depth-pro
|
6 |
+
Project-URL: Repository, https://github.com/apple/ml-depth-pro
|
7 |
+
Description-Content-Type: text/markdown
|
8 |
+
License-File: LICENSE
|
9 |
+
Requires-Dist: torch
|
10 |
+
Requires-Dist: torchvision
|
11 |
+
Requires-Dist: timm
|
12 |
+
Requires-Dist: numpy<2
|
13 |
+
Requires-Dist: pillow_heif
|
14 |
+
Requires-Dist: matplotlib
|
15 |
+
|
16 |
+
## Depth Pro: Sharp Monocular Metric Depth in Less Than a Second
|
17 |
+
|
18 |
+
This software project accompanies the research paper:
|
19 |
+
**Depth Pro: Sharp Monocular Metric Depth in Less Than a Second**,
|
20 |
+
*Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R. Richter, and Vladlen Koltun*.
|
21 |
+
|
22 |
+
![](data/depth-pro-teaser.jpg)
|
23 |
+
|
24 |
+
We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image.
|
25 |
+
|
26 |
+
|
27 |
+
The model in this repository is a reference implementation, which has been re-trained. Its performance is close to the model reported in the paper but does not match it exactly.
|
28 |
+
|
29 |
+
## Getting Started
|
30 |
+
|
31 |
+
We recommend setting up a virtual environment. Using e.g. miniconda, the `depth_pro` package can be installed via:
|
32 |
+
|
33 |
+
```bash
|
34 |
+
conda create -n depth-pro -y python=3.9
|
35 |
+
conda activate depth-pro
|
36 |
+
|
37 |
+
pip install -e .
|
38 |
+
```
|
39 |
+
|
40 |
+
To download pretrained checkpoints follow the code snippet below:
|
41 |
+
```bash
|
42 |
+
source get_pretrained_models.sh # Files will be downloaded to `checkpoints` directory.
|
43 |
+
```
|
44 |
+
|
45 |
+
### Running from commandline
|
46 |
+
|
47 |
+
We provide a helper script to directly run the model on a single image:
|
48 |
+
```bash
|
49 |
+
# Run prediction on a single image:
|
50 |
+
depth-pro-run -i ./data/example.jpg
|
51 |
+
# Run `depth-pro-run -h` for available options.
|
52 |
+
```
|
53 |
+
|
54 |
+
### Running from python
|
55 |
+
|
56 |
+
```python
|
57 |
+
from PIL import Image
|
58 |
+
import depth_pro
|
59 |
+
|
60 |
+
# Load model and preprocessing transform
|
61 |
+
model, transform = depth_pro.create_model_and_transforms()
|
62 |
+
model.eval()
|
63 |
+
|
64 |
+
# Load and preprocess an image.
|
65 |
+
image, _, f_px = depth_pro.load_rgb(image_path)
|
66 |
+
image = transform(image)
|
67 |
+
|
68 |
+
# Run inference.
|
69 |
+
prediction = model.infer(image, f_px=f_px)
|
70 |
+
depth = prediction["depth"] # Depth in [m].
|
71 |
+
focallength_px = prediction["focallength_px"] # Focal length in pixels.
|
72 |
+
```
|
73 |
+
|
74 |
+
|
75 |
+
### Evaluation (boundary metrics)
|
76 |
+
|
77 |
+
Our boundary metrics can be found under `eval/boundary_metrics.py` and used as follows:
|
78 |
+
|
79 |
+
```python
|
80 |
+
# for a depth-based dataset
|
81 |
+
boundary_f1 = SI_boundary_F1(predicted_depth, target_depth)
|
82 |
+
|
83 |
+
# for a mask-based dataset (image matting / segmentation)
|
84 |
+
boundary_recall = SI_boundary_Recall(predicted_depth, target_mask)
|
85 |
+
```
|
86 |
+
|
87 |
+
|
88 |
+
## Citation
|
89 |
+
|
90 |
+
If you find our work useful, please cite the following paper:
|
91 |
+
|
92 |
+
```bibtex
|
93 |
+
@article{Bochkovskii2024:arxiv,
|
94 |
+
author = {Aleksei Bochkovskii and Ama\"{e}l Delaunoy and Hugo Germain and Marcel Santos and
|
95 |
+
Yichao Zhou and Stephan R. Richter and Vladlen Koltun}
|
96 |
+
title = {Depth Pro: Sharp Monocular Metric Depth in Less Than a Second},
|
97 |
+
journal = {arXiv},
|
98 |
+
year = {2024},
|
99 |
+
}
|
100 |
+
```
|
101 |
+
|
102 |
+
## License
|
103 |
+
This sample code is released under the [LICENSE](LICENSE) terms.
|
104 |
+
|
105 |
+
The model weights are released under the [LICENSE](LICENSE) terms.
|
106 |
+
|
107 |
+
## Acknowledgements
|
108 |
+
|
109 |
+
Our codebase is built using multiple opensource contributions, please see [Acknowledgements](ACKNOWLEDGEMENTS.md) for more details.
|
110 |
+
|
111 |
+
Please check the paper for a complete list of references and datasets used in this work.
|
src/depth_pro.egg-info/SOURCES.txt
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ACKNOWLEDGEMENTS.md
|
2 |
+
CODE_OF_CONDUCT.md
|
3 |
+
CONTRIBUTING.md
|
4 |
+
LICENSE
|
5 |
+
README.md
|
6 |
+
get_pretrained_models.sh
|
7 |
+
pyproject.toml
|
8 |
+
data/depth-pro-teaser.jpg
|
9 |
+
data/example.jpg
|
10 |
+
src/depth_pro/__init__.py
|
11 |
+
src/depth_pro/depth_pro.py
|
12 |
+
src/depth_pro/utils.py
|
13 |
+
src/depth_pro.egg-info/PKG-INFO
|
14 |
+
src/depth_pro.egg-info/SOURCES.txt
|
15 |
+
src/depth_pro.egg-info/dependency_links.txt
|
16 |
+
src/depth_pro.egg-info/entry_points.txt
|
17 |
+
src/depth_pro.egg-info/requires.txt
|
18 |
+
src/depth_pro.egg-info/top_level.txt
|
19 |
+
src/depth_pro/cli/__init__.py
|
20 |
+
src/depth_pro/cli/run.py
|
21 |
+
src/depth_pro/eval/boundary_metrics.py
|
22 |
+
src/depth_pro/eval/dis5k_sample_list.txt
|
23 |
+
src/depth_pro/network/__init__.py
|
24 |
+
src/depth_pro/network/decoder.py
|
25 |
+
src/depth_pro/network/encoder.py
|
26 |
+
src/depth_pro/network/fov.py
|
27 |
+
src/depth_pro/network/vit.py
|
28 |
+
src/depth_pro/network/vit_factory.py
|
src/depth_pro.egg-info/dependency_links.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
src/depth_pro.egg-info/entry_points.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[console_scripts]
|
2 |
+
depth-pro-run = depth_pro.cli:run_main
|
src/depth_pro.egg-info/requires.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
timm
|
4 |
+
numpy<2
|
5 |
+
pillow_heif
|
6 |
+
matplotlib
|
src/depth_pro.egg-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
depth_pro
|
src/depth_pro/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
2 |
+
"""Depth Pro package."""
|
3 |
+
|
4 |
+
from .depth_pro import create_model_and_transforms # noqa
|
5 |
+
from .utils import load_rgb # noqa
|
src/depth_pro/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (286 Bytes). View file
|
|
src/depth_pro/__pycache__/depth_pro.cpython-39.pyc
ADDED
Binary file (7.82 kB). View file
|
|
src/depth_pro/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (3.25 kB). View file
|
|
src/depth_pro/cli/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
2 |
+
"""Depth Pro CLI and tools."""
|
3 |
+
|
4 |
+
from .run import main as run_main # noqa
|
src/depth_pro/cli/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (239 Bytes). View file
|
|
src/depth_pro/cli/__pycache__/run.cpython-39.pyc
ADDED
Binary file (3.39 kB). View file
|
|
src/depth_pro/cli/run.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""Sample script to run DepthPro.
|
3 |
+
|
4 |
+
Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
5 |
+
"""
|
6 |
+
|
7 |
+
|
8 |
+
import argparse
|
9 |
+
import logging
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import PIL.Image
|
14 |
+
import torch
|
15 |
+
from matplotlib import pyplot as plt
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
from depth_pro import create_model_and_transforms, load_rgb
|
19 |
+
|
20 |
+
LOGGER = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
def get_torch_device() -> torch.device:
|
24 |
+
"""Get the Torch device."""
|
25 |
+
device = torch.device("cpu")
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
device = torch.device("cuda:0")
|
28 |
+
elif torch.backends.mps.is_available():
|
29 |
+
device = torch.device("mps")
|
30 |
+
return device
|
31 |
+
|
32 |
+
|
33 |
+
def run(args):
|
34 |
+
"""Run Depth Pro on a sample image."""
|
35 |
+
if args.verbose:
|
36 |
+
logging.basicConfig(level=logging.INFO)
|
37 |
+
|
38 |
+
# Load model.
|
39 |
+
model, transform = create_model_and_transforms(
|
40 |
+
device=get_torch_device(),
|
41 |
+
precision=torch.half,
|
42 |
+
)
|
43 |
+
model.eval()
|
44 |
+
|
45 |
+
image_paths = [args.image_path]
|
46 |
+
if args.image_path.is_dir():
|
47 |
+
image_paths = args.image_path.glob("**/*")
|
48 |
+
relative_path = args.image_path
|
49 |
+
else:
|
50 |
+
relative_path = args.image_path.parent
|
51 |
+
|
52 |
+
if not args.skip_display:
|
53 |
+
plt.ion()
|
54 |
+
fig = plt.figure()
|
55 |
+
ax_rgb = fig.add_subplot(121)
|
56 |
+
ax_disp = fig.add_subplot(122)
|
57 |
+
|
58 |
+
for image_path in tqdm(image_paths):
|
59 |
+
# Load image and focal length from exif info (if found.).
|
60 |
+
try:
|
61 |
+
LOGGER.info(f"Loading image {image_path} ...")
|
62 |
+
image, _, f_px = load_rgb(image_path)
|
63 |
+
except Exception as e:
|
64 |
+
LOGGER.error(str(e))
|
65 |
+
continue
|
66 |
+
# Run prediction. If `f_px` is provided, it is used to estimate the final metric depth,
|
67 |
+
# otherwise the model estimates `f_px` to compute the depth metricness.
|
68 |
+
prediction = model.infer(transform(image), f_px=f_px)
|
69 |
+
|
70 |
+
# Extract the depth and focal length.
|
71 |
+
depth = prediction["depth"].detach().cpu().numpy().squeeze()
|
72 |
+
if f_px is not None:
|
73 |
+
LOGGER.debug(f"Focal length (from exif): {f_px:0.2f}")
|
74 |
+
elif prediction["focallength_px"] is not None:
|
75 |
+
focallength_px = prediction["focallength_px"].detach().cpu().item()
|
76 |
+
LOGGER.info(f"Estimated focal length: {focallength_px}")
|
77 |
+
|
78 |
+
# Save Depth as npz file.
|
79 |
+
if args.output_path is not None:
|
80 |
+
output_file = (
|
81 |
+
args.output_path
|
82 |
+
/ image_path.relative_to(relative_path).parent
|
83 |
+
/ image_path.stem
|
84 |
+
)
|
85 |
+
LOGGER.info(f"Saving depth map to: {str(output_file)}")
|
86 |
+
output_file.parent.mkdir(parents=True, exist_ok=True)
|
87 |
+
np.savez_compressed(output_file, depth=depth)
|
88 |
+
|
89 |
+
# Save as color-mapped "turbo" jpg image.
|
90 |
+
cmap = plt.get_cmap("turbo_r")
|
91 |
+
normalized_depth = (depth - depth.min()) / (
|
92 |
+
depth.max() - depth.min()
|
93 |
+
)
|
94 |
+
color_depth = (cmap(normalized_depth)[..., :3] * 255).astype(
|
95 |
+
np.uint8
|
96 |
+
)
|
97 |
+
color_map_output_file = str(output_file) + ".jpg"
|
98 |
+
LOGGER.info(f"Saving color-mapped depth to: : {color_map_output_file}")
|
99 |
+
PIL.Image.fromarray(color_depth).save(
|
100 |
+
color_map_output_file, format="JPEG", quality=90
|
101 |
+
)
|
102 |
+
|
103 |
+
# Display the image and estimated depth map.
|
104 |
+
if not args.skip_display:
|
105 |
+
ax_rgb.imshow(image)
|
106 |
+
ax_disp.imshow(depth, cmap="turbo_r")
|
107 |
+
fig.canvas.draw()
|
108 |
+
fig.canvas.flush_events()
|
109 |
+
|
110 |
+
LOGGER.info("Done predicting depth!")
|
111 |
+
if not args.skip_display:
|
112 |
+
plt.show(block=True)
|
113 |
+
|
114 |
+
|
115 |
+
def main():
|
116 |
+
"""Run DepthPro inference example."""
|
117 |
+
parser = argparse.ArgumentParser(
|
118 |
+
description="Inference scripts of DepthPro with PyTorch models."
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"-i",
|
122 |
+
"--image-path",
|
123 |
+
type=Path,
|
124 |
+
default="./data/example.jpg",
|
125 |
+
help="Path to input image.",
|
126 |
+
)
|
127 |
+
parser.add_argument(
|
128 |
+
"-o",
|
129 |
+
"--output-path",
|
130 |
+
type=Path,
|
131 |
+
help="Path to store output files.",
|
132 |
+
)
|
133 |
+
parser.add_argument(
|
134 |
+
"--skip-display",
|
135 |
+
action="store_true",
|
136 |
+
help="Skip matplotlib display.",
|
137 |
+
)
|
138 |
+
parser.add_argument(
|
139 |
+
"-v",
|
140 |
+
"--verbose",
|
141 |
+
action="store_true",
|
142 |
+
help="Show verbose output."
|
143 |
+
)
|
144 |
+
|
145 |
+
run(parser.parse_args())
|
146 |
+
|
147 |
+
|
148 |
+
if __name__ == "__main__":
|
149 |
+
main()
|
src/depth_pro/depth_pro.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
2 |
+
# Depth Pro: Sharp Monocular Metric Depth in Less Than a Second
|
3 |
+
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from typing import Mapping, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch import nn
|
12 |
+
from torchvision.transforms import (
|
13 |
+
Compose,
|
14 |
+
ConvertImageDtype,
|
15 |
+
Lambda,
|
16 |
+
Normalize,
|
17 |
+
ToTensor,
|
18 |
+
)
|
19 |
+
|
20 |
+
from .network.decoder import MultiresConvDecoder
|
21 |
+
from .network.encoder import DepthProEncoder
|
22 |
+
from .network.fov import FOVNetwork
|
23 |
+
from .network.vit_factory import VIT_CONFIG_DICT, ViTPreset, create_vit
|
24 |
+
|
25 |
+
|
26 |
+
@dataclass
|
27 |
+
class DepthProConfig:
|
28 |
+
"""Configuration for DepthPro."""
|
29 |
+
|
30 |
+
patch_encoder_preset: ViTPreset
|
31 |
+
image_encoder_preset: ViTPreset
|
32 |
+
decoder_features: int
|
33 |
+
|
34 |
+
checkpoint_uri: Optional[str] = None
|
35 |
+
fov_encoder_preset: Optional[ViTPreset] = None
|
36 |
+
use_fov_head: bool = True
|
37 |
+
|
38 |
+
|
39 |
+
DEFAULT_MONODEPTH_CONFIG_DICT = DepthProConfig(
|
40 |
+
patch_encoder_preset="dinov2l16_384",
|
41 |
+
image_encoder_preset="dinov2l16_384",
|
42 |
+
checkpoint_uri="./checkpoints/depth_pro.pt",
|
43 |
+
decoder_features=256,
|
44 |
+
use_fov_head=True,
|
45 |
+
fov_encoder_preset="dinov2l16_384",
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
def create_backbone_model(
|
50 |
+
preset: ViTPreset
|
51 |
+
) -> Tuple[nn.Module, ViTPreset]:
|
52 |
+
"""Create and load a backbone model given a config.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
----
|
56 |
+
preset: A backbone preset to load pre-defind configs.
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
-------
|
60 |
+
A Torch module and the associated config.
|
61 |
+
|
62 |
+
"""
|
63 |
+
if preset in VIT_CONFIG_DICT:
|
64 |
+
config = VIT_CONFIG_DICT[preset]
|
65 |
+
model = create_vit(preset=preset, use_pretrained=False)
|
66 |
+
else:
|
67 |
+
raise KeyError(f"Preset {preset} not found.")
|
68 |
+
|
69 |
+
return model, config
|
70 |
+
|
71 |
+
|
72 |
+
def create_model_and_transforms(
|
73 |
+
config: DepthProConfig = DEFAULT_MONODEPTH_CONFIG_DICT,
|
74 |
+
device: torch.device = torch.device("cpu"),
|
75 |
+
precision: torch.dtype = torch.float32,
|
76 |
+
) -> Tuple[DepthPro, Compose]:
|
77 |
+
"""Create a DepthPro model and load weights from `config.checkpoint_uri`.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
----
|
81 |
+
config: The configuration for the DPT model architecture.
|
82 |
+
device: The optional Torch device to load the model onto, default runs on "cpu".
|
83 |
+
precision: The optional precision used for the model, default is FP32.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
-------
|
87 |
+
The Torch DepthPro model and associated Transform.
|
88 |
+
|
89 |
+
"""
|
90 |
+
patch_encoder, patch_encoder_config = create_backbone_model(
|
91 |
+
preset=config.patch_encoder_preset
|
92 |
+
)
|
93 |
+
image_encoder, _ = create_backbone_model(
|
94 |
+
preset=config.image_encoder_preset
|
95 |
+
)
|
96 |
+
|
97 |
+
fov_encoder = None
|
98 |
+
if config.use_fov_head and config.fov_encoder_preset is not None:
|
99 |
+
fov_encoder, _ = create_backbone_model(preset=config.fov_encoder_preset)
|
100 |
+
|
101 |
+
dims_encoder = patch_encoder_config.encoder_feature_dims
|
102 |
+
hook_block_ids = patch_encoder_config.encoder_feature_layer_ids
|
103 |
+
encoder = DepthProEncoder(
|
104 |
+
dims_encoder=dims_encoder,
|
105 |
+
patch_encoder=patch_encoder,
|
106 |
+
image_encoder=image_encoder,
|
107 |
+
hook_block_ids=hook_block_ids,
|
108 |
+
decoder_features=config.decoder_features,
|
109 |
+
)
|
110 |
+
decoder = MultiresConvDecoder(
|
111 |
+
dims_encoder=[config.decoder_features] + list(encoder.dims_encoder),
|
112 |
+
dim_decoder=config.decoder_features,
|
113 |
+
)
|
114 |
+
model = DepthPro(
|
115 |
+
encoder=encoder,
|
116 |
+
decoder=decoder,
|
117 |
+
last_dims=(32, 1),
|
118 |
+
use_fov_head=config.use_fov_head,
|
119 |
+
fov_encoder=fov_encoder,
|
120 |
+
).to(device)
|
121 |
+
|
122 |
+
if precision == torch.half:
|
123 |
+
model.half()
|
124 |
+
|
125 |
+
transform = Compose(
|
126 |
+
[
|
127 |
+
ToTensor(),
|
128 |
+
Lambda(lambda x: x.to(device)),
|
129 |
+
Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
|
130 |
+
ConvertImageDtype(precision),
|
131 |
+
]
|
132 |
+
)
|
133 |
+
|
134 |
+
if config.checkpoint_uri is not None:
|
135 |
+
state_dict = torch.load(config.checkpoint_uri, map_location="cpu")
|
136 |
+
missing_keys, unexpected_keys = model.load_state_dict(
|
137 |
+
state_dict=state_dict, strict=True
|
138 |
+
)
|
139 |
+
|
140 |
+
if len(unexpected_keys) != 0:
|
141 |
+
raise KeyError(
|
142 |
+
f"Found unexpected keys when loading monodepth: {unexpected_keys}"
|
143 |
+
)
|
144 |
+
|
145 |
+
# fc_norm is only for the classification head,
|
146 |
+
# which we would not use. We only use the encoding.
|
147 |
+
missing_keys = [key for key in missing_keys if "fc_norm" not in key]
|
148 |
+
if len(missing_keys) != 0:
|
149 |
+
raise KeyError(f"Keys are missing when loading monodepth: {missing_keys}")
|
150 |
+
|
151 |
+
return model, transform
|
152 |
+
|
153 |
+
|
154 |
+
class DepthPro(nn.Module):
|
155 |
+
"""DepthPro network."""
|
156 |
+
|
157 |
+
def __init__(
|
158 |
+
self,
|
159 |
+
encoder: DepthProEncoder,
|
160 |
+
decoder: MultiresConvDecoder,
|
161 |
+
last_dims: tuple[int, int],
|
162 |
+
use_fov_head: bool = True,
|
163 |
+
fov_encoder: Optional[nn.Module] = None,
|
164 |
+
):
|
165 |
+
"""Initialize DepthPro.
|
166 |
+
|
167 |
+
Args:
|
168 |
+
----
|
169 |
+
encoder: The DepthProEncoder backbone.
|
170 |
+
decoder: The MultiresConvDecoder decoder.
|
171 |
+
last_dims: The dimension for the last convolution layers.
|
172 |
+
use_fov_head: Whether to use the field-of-view head.
|
173 |
+
fov_encoder: A separate encoder for the field of view.
|
174 |
+
|
175 |
+
"""
|
176 |
+
super().__init__()
|
177 |
+
|
178 |
+
self.encoder = encoder
|
179 |
+
self.decoder = decoder
|
180 |
+
|
181 |
+
dim_decoder = decoder.dim_decoder
|
182 |
+
self.head = nn.Sequential(
|
183 |
+
nn.Conv2d(
|
184 |
+
dim_decoder, dim_decoder // 2, kernel_size=3, stride=1, padding=1
|
185 |
+
),
|
186 |
+
nn.ConvTranspose2d(
|
187 |
+
in_channels=dim_decoder // 2,
|
188 |
+
out_channels=dim_decoder // 2,
|
189 |
+
kernel_size=2,
|
190 |
+
stride=2,
|
191 |
+
padding=0,
|
192 |
+
bias=True,
|
193 |
+
),
|
194 |
+
nn.Conv2d(
|
195 |
+
dim_decoder // 2,
|
196 |
+
last_dims[0],
|
197 |
+
kernel_size=3,
|
198 |
+
stride=1,
|
199 |
+
padding=1,
|
200 |
+
),
|
201 |
+
nn.ReLU(True),
|
202 |
+
nn.Conv2d(last_dims[0], last_dims[1], kernel_size=1, stride=1, padding=0),
|
203 |
+
nn.ReLU(),
|
204 |
+
)
|
205 |
+
|
206 |
+
# Set the final convoultion layer's bias to be 0.
|
207 |
+
self.head[4].bias.data.fill_(0)
|
208 |
+
|
209 |
+
# Set the FOV estimation head.
|
210 |
+
if use_fov_head:
|
211 |
+
self.fov = FOVNetwork(num_features=dim_decoder, fov_encoder=fov_encoder)
|
212 |
+
|
213 |
+
@property
|
214 |
+
def img_size(self) -> int:
|
215 |
+
"""Return the internal image size of the network."""
|
216 |
+
return self.encoder.img_size
|
217 |
+
|
218 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
219 |
+
"""Decode by projection and fusion of multi-resolution encodings.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
----
|
223 |
+
x (torch.Tensor): Input image.
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
-------
|
227 |
+
The canonical inverse depth map [m] and the optional estimated field of view [deg].
|
228 |
+
|
229 |
+
"""
|
230 |
+
_, _, H, W = x.shape
|
231 |
+
print("Width:", W)
|
232 |
+
print("Height:", H)
|
233 |
+
assert H == self.img_size and W == self.img_size
|
234 |
+
|
235 |
+
encodings = self.encoder(x)
|
236 |
+
features, features_0 = self.decoder(encodings)
|
237 |
+
canonical_inverse_depth = self.head(features)
|
238 |
+
|
239 |
+
fov_deg = None
|
240 |
+
if hasattr(self, "fov"):
|
241 |
+
fov_deg = self.fov.forward(x, features_0.detach())
|
242 |
+
|
243 |
+
return canonical_inverse_depth, fov_deg
|
244 |
+
|
245 |
+
@torch.no_grad()
|
246 |
+
def infer(
|
247 |
+
self,
|
248 |
+
x: torch.Tensor,
|
249 |
+
f_px: Optional[Union[float, torch.Tensor]] = None,
|
250 |
+
interpolation_mode="bilinear",
|
251 |
+
) -> Mapping[str, torch.Tensor]:
|
252 |
+
"""Infer depth and fov for a given image.
|
253 |
+
|
254 |
+
If the image is not at network resolution, it is resized to 1536x1536 and
|
255 |
+
the estimated depth is resized to the original image resolution.
|
256 |
+
Note: if the focal length is given, the estimated value is ignored and the provided
|
257 |
+
focal length is use to generate the metric depth values.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
----
|
261 |
+
x (torch.Tensor): Input image
|
262 |
+
f_px (torch.Tensor): Optional focal length in pixels corresponding to `x`.
|
263 |
+
interpolation_mode (str): Interpolation function for downsampling/upsampling.
|
264 |
+
|
265 |
+
Returns:
|
266 |
+
-------
|
267 |
+
Tensor dictionary (torch.Tensor): depth [m], focallength [pixels].
|
268 |
+
|
269 |
+
"""
|
270 |
+
if len(x.shape) == 3:
|
271 |
+
x = x.unsqueeze(0)
|
272 |
+
_, _, H, W = x.shape
|
273 |
+
resize = H != self.img_size or W != self.img_size
|
274 |
+
|
275 |
+
if resize:
|
276 |
+
x = nn.functional.interpolate(
|
277 |
+
x,
|
278 |
+
size=(self.img_size, self.img_size),
|
279 |
+
mode=interpolation_mode,
|
280 |
+
align_corners=False,
|
281 |
+
)
|
282 |
+
|
283 |
+
canonical_inverse_depth, fov_deg = self.forward(x)
|
284 |
+
if f_px is None:
|
285 |
+
f_px = 0.5 * W / torch.tan(0.5 * torch.deg2rad(fov_deg.to(torch.float)))
|
286 |
+
|
287 |
+
inverse_depth = canonical_inverse_depth * (W / f_px)
|
288 |
+
f_px = f_px.squeeze()
|
289 |
+
|
290 |
+
if resize:
|
291 |
+
inverse_depth = nn.functional.interpolate(
|
292 |
+
inverse_depth, size=(H, W), mode=interpolation_mode, align_corners=False
|
293 |
+
)
|
294 |
+
|
295 |
+
depth = 1.0 / torch.clamp(inverse_depth, min=1e-4, max=1e4)
|
296 |
+
|
297 |
+
return {
|
298 |
+
"depth": depth.squeeze(),
|
299 |
+
"focallength_px": f_px,
|
300 |
+
}
|
src/depth_pro/eval/boundary_metrics.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
def connected_component(r: np.ndarray, c: np.ndarray) -> List[List[int]]:
|
7 |
+
"""Find connected components in the given row and column indices.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
----
|
11 |
+
r (np.ndarray): Row indices.
|
12 |
+
c (np.ndarray): Column indices.
|
13 |
+
|
14 |
+
Yields:
|
15 |
+
------
|
16 |
+
List[int]: Indices of connected components.
|
17 |
+
|
18 |
+
"""
|
19 |
+
indices = [0]
|
20 |
+
for i in range(1, r.size):
|
21 |
+
if r[i] == r[indices[-1]] and c[i] == c[indices[-1]] + 1:
|
22 |
+
indices.append(i)
|
23 |
+
else:
|
24 |
+
yield indices
|
25 |
+
indices = [i]
|
26 |
+
yield indices
|
27 |
+
|
28 |
+
|
29 |
+
def nms_horizontal(ratio: np.ndarray, threshold: float) -> np.ndarray:
|
30 |
+
"""Apply Non-Maximum Suppression (NMS) horizontally on the given ratio matrix.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
----
|
34 |
+
ratio (np.ndarray): Input ratio matrix.
|
35 |
+
threshold (float): Threshold for NMS.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
-------
|
39 |
+
np.ndarray: Binary mask after applying NMS.
|
40 |
+
|
41 |
+
"""
|
42 |
+
mask = np.zeros_like(ratio, dtype=bool)
|
43 |
+
r, c = np.nonzero(ratio > threshold)
|
44 |
+
if len(r) == 0:
|
45 |
+
return mask
|
46 |
+
for ids in connected_component(r, c):
|
47 |
+
values = [ratio[r[i], c[i]] for i in ids]
|
48 |
+
mi = np.argmax(values)
|
49 |
+
mask[r[ids[mi]], c[ids[mi]]] = True
|
50 |
+
return mask
|
51 |
+
|
52 |
+
|
53 |
+
def nms_vertical(ratio: np.ndarray, threshold: float) -> np.ndarray:
|
54 |
+
"""Apply Non-Maximum Suppression (NMS) vertically on the given ratio matrix.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
----
|
58 |
+
ratio (np.ndarray): Input ratio matrix.
|
59 |
+
threshold (float): Threshold for NMS.
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
-------
|
63 |
+
np.ndarray: Binary mask after applying NMS.
|
64 |
+
|
65 |
+
"""
|
66 |
+
return np.transpose(nms_horizontal(np.transpose(ratio), threshold))
|
67 |
+
|
68 |
+
|
69 |
+
def fgbg_depth(
|
70 |
+
d: np.ndarray, t: float
|
71 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
72 |
+
"""Find foreground-background relations between neighboring pixels.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
----
|
76 |
+
d (np.ndarray): Depth matrix.
|
77 |
+
t (float): Threshold for comparison.
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
-------
|
81 |
+
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: Four matrices indicating
|
82 |
+
left, top, right, and bottom foreground-background relations.
|
83 |
+
|
84 |
+
"""
|
85 |
+
right_is_big_enough = (d[..., :, 1:] / d[..., :, :-1]) > t
|
86 |
+
left_is_big_enough = (d[..., :, :-1] / d[..., :, 1:]) > t
|
87 |
+
bottom_is_big_enough = (d[..., 1:, :] / d[..., :-1, :]) > t
|
88 |
+
top_is_big_enough = (d[..., :-1, :] / d[..., 1:, :]) > t
|
89 |
+
return (
|
90 |
+
left_is_big_enough,
|
91 |
+
top_is_big_enough,
|
92 |
+
right_is_big_enough,
|
93 |
+
bottom_is_big_enough,
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
def fgbg_depth_thinned(
|
98 |
+
d: np.ndarray, t: float
|
99 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
100 |
+
"""Find foreground-background relations between neighboring pixels with Non-Maximum Suppression.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
----
|
104 |
+
d (np.ndarray): Depth matrix.
|
105 |
+
t (float): Threshold for NMS.
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
-------
|
109 |
+
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: Four matrices indicating
|
110 |
+
left, top, right, and bottom foreground-background relations with NMS applied.
|
111 |
+
|
112 |
+
"""
|
113 |
+
right_is_big_enough = nms_horizontal(d[..., :, 1:] / d[..., :, :-1], t)
|
114 |
+
left_is_big_enough = nms_horizontal(d[..., :, :-1] / d[..., :, 1:], t)
|
115 |
+
bottom_is_big_enough = nms_vertical(d[..., 1:, :] / d[..., :-1, :], t)
|
116 |
+
top_is_big_enough = nms_vertical(d[..., :-1, :] / d[..., 1:, :], t)
|
117 |
+
return (
|
118 |
+
left_is_big_enough,
|
119 |
+
top_is_big_enough,
|
120 |
+
right_is_big_enough,
|
121 |
+
bottom_is_big_enough,
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
def fgbg_binary_mask(
|
126 |
+
d: np.ndarray,
|
127 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
128 |
+
"""Find foreground-background relations between neighboring pixels in binary masks.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
----
|
132 |
+
d (np.ndarray): Binary depth matrix.
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
-------
|
136 |
+
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: Four matrices indicating
|
137 |
+
left, top, right, and bottom foreground-background relations in binary masks.
|
138 |
+
|
139 |
+
"""
|
140 |
+
assert d.dtype == bool
|
141 |
+
right_is_big_enough = d[..., :, 1:] & ~d[..., :, :-1]
|
142 |
+
left_is_big_enough = d[..., :, :-1] & ~d[..., :, 1:]
|
143 |
+
bottom_is_big_enough = d[..., 1:, :] & ~d[..., :-1, :]
|
144 |
+
top_is_big_enough = d[..., :-1, :] & ~d[..., 1:, :]
|
145 |
+
return (
|
146 |
+
left_is_big_enough,
|
147 |
+
top_is_big_enough,
|
148 |
+
right_is_big_enough,
|
149 |
+
bottom_is_big_enough,
|
150 |
+
)
|
151 |
+
|
152 |
+
|
153 |
+
def edge_recall_matting(pr: np.ndarray, gt: np.ndarray, t: float) -> float:
|
154 |
+
"""Calculate edge recall for image matting.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
----
|
158 |
+
pr (np.ndarray): Predicted depth matrix.
|
159 |
+
gt (np.ndarray): Ground truth binary mask.
|
160 |
+
t (float): Threshold for NMS.
|
161 |
+
|
162 |
+
Returns:
|
163 |
+
-------
|
164 |
+
float: Edge recall value.
|
165 |
+
|
166 |
+
"""
|
167 |
+
assert gt.dtype == bool
|
168 |
+
ap, bp, cp, dp = fgbg_depth_thinned(pr, t)
|
169 |
+
ag, bg, cg, dg = fgbg_binary_mask(gt)
|
170 |
+
return 0.25 * (
|
171 |
+
np.count_nonzero(ap & ag) / max(np.count_nonzero(ag), 1)
|
172 |
+
+ np.count_nonzero(bp & bg) / max(np.count_nonzero(bg), 1)
|
173 |
+
+ np.count_nonzero(cp & cg) / max(np.count_nonzero(cg), 1)
|
174 |
+
+ np.count_nonzero(dp & dg) / max(np.count_nonzero(dg), 1)
|
175 |
+
)
|
176 |
+
|
177 |
+
|
178 |
+
def boundary_f1(
|
179 |
+
pr: np.ndarray,
|
180 |
+
gt: np.ndarray,
|
181 |
+
t: float,
|
182 |
+
return_p: bool = False,
|
183 |
+
return_r: bool = False,
|
184 |
+
) -> float:
|
185 |
+
"""Calculate Boundary F1 score.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
----
|
189 |
+
pr (np.ndarray): Predicted depth matrix.
|
190 |
+
gt (np.ndarray): Ground truth depth matrix.
|
191 |
+
t (float): Threshold for comparison.
|
192 |
+
return_p (bool, optional): If True, return precision. Defaults to False.
|
193 |
+
return_r (bool, optional): If True, return recall. Defaults to False.
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
-------
|
197 |
+
float: Boundary F1 score, or precision, or recall depending on the flags.
|
198 |
+
|
199 |
+
"""
|
200 |
+
ap, bp, cp, dp = fgbg_depth(pr, t)
|
201 |
+
ag, bg, cg, dg = fgbg_depth(gt, t)
|
202 |
+
|
203 |
+
r = 0.25 * (
|
204 |
+
np.count_nonzero(ap & ag) / max(np.count_nonzero(ag), 1)
|
205 |
+
+ np.count_nonzero(bp & bg) / max(np.count_nonzero(bg), 1)
|
206 |
+
+ np.count_nonzero(cp & cg) / max(np.count_nonzero(cg), 1)
|
207 |
+
+ np.count_nonzero(dp & dg) / max(np.count_nonzero(dg), 1)
|
208 |
+
)
|
209 |
+
p = 0.25 * (
|
210 |
+
np.count_nonzero(ap & ag) / max(np.count_nonzero(ap), 1)
|
211 |
+
+ np.count_nonzero(bp & bg) / max(np.count_nonzero(bp), 1)
|
212 |
+
+ np.count_nonzero(cp & cg) / max(np.count_nonzero(cp), 1)
|
213 |
+
+ np.count_nonzero(dp & dg) / max(np.count_nonzero(dp), 1)
|
214 |
+
)
|
215 |
+
if r + p == 0:
|
216 |
+
return 0.0
|
217 |
+
if return_p:
|
218 |
+
return p
|
219 |
+
if return_r:
|
220 |
+
return r
|
221 |
+
return 2 * (r * p) / (r + p)
|
222 |
+
|
223 |
+
|
224 |
+
def get_thresholds_and_weights(
|
225 |
+
t_min: float, t_max: float, N: int
|
226 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
227 |
+
"""Generate thresholds and weights for the given range.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
----
|
231 |
+
t_min (float): Minimum threshold.
|
232 |
+
t_max (float): Maximum threshold.
|
233 |
+
N (int): Number of thresholds.
|
234 |
+
|
235 |
+
Returns:
|
236 |
+
-------
|
237 |
+
Tuple[np.ndarray, np.ndarray]: Array of thresholds and corresponding weights.
|
238 |
+
|
239 |
+
"""
|
240 |
+
thresholds = np.linspace(t_min, t_max, N)
|
241 |
+
weights = thresholds / thresholds.sum()
|
242 |
+
return thresholds, weights
|
243 |
+
|
244 |
+
|
245 |
+
def invert_depth(depth: np.ndarray, eps: float = 1e-6) -> np.ndarray:
|
246 |
+
"""Inverts a depth map with numerical stability.
|
247 |
+
|
248 |
+
Args:
|
249 |
+
----
|
250 |
+
depth (np.ndarray): Depth map to be inverted.
|
251 |
+
eps (float): Minimum value to avoid division by zero (default is 1e-6).
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
-------
|
255 |
+
np.ndarray: Inverted depth map.
|
256 |
+
|
257 |
+
"""
|
258 |
+
inverse_depth = 1.0 / depth.clip(min=eps)
|
259 |
+
return inverse_depth
|
260 |
+
|
261 |
+
|
262 |
+
def SI_boundary_F1(
|
263 |
+
predicted_depth: np.ndarray,
|
264 |
+
target_depth: np.ndarray,
|
265 |
+
t_min: float = 1.05,
|
266 |
+
t_max: float = 1.25,
|
267 |
+
N: int = 10,
|
268 |
+
) -> float:
|
269 |
+
"""Calculate Scale-Invariant Boundary F1 Score for depth-based ground-truth.
|
270 |
+
|
271 |
+
Args:
|
272 |
+
----
|
273 |
+
predicted_depth (np.ndarray): Predicted depth matrix.
|
274 |
+
target_depth (np.ndarray): Ground truth depth matrix.
|
275 |
+
t_min (float, optional): Minimum threshold. Defaults to 1.05.
|
276 |
+
t_max (float, optional): Maximum threshold. Defaults to 1.25.
|
277 |
+
N (int, optional): Number of thresholds. Defaults to 10.
|
278 |
+
|
279 |
+
Returns:
|
280 |
+
-------
|
281 |
+
float: Scale-Invariant Boundary F1 Score.
|
282 |
+
|
283 |
+
"""
|
284 |
+
assert predicted_depth.ndim == target_depth.ndim == 2
|
285 |
+
thresholds, weights = get_thresholds_and_weights(t_min, t_max, N)
|
286 |
+
f1_scores = np.array(
|
287 |
+
[
|
288 |
+
boundary_f1(invert_depth(predicted_depth), invert_depth(target_depth), t)
|
289 |
+
for t in thresholds
|
290 |
+
]
|
291 |
+
)
|
292 |
+
return np.sum(f1_scores * weights)
|
293 |
+
|
294 |
+
|
295 |
+
def SI_boundary_Recall(
|
296 |
+
predicted_depth: np.ndarray,
|
297 |
+
target_mask: np.ndarray,
|
298 |
+
t_min: float = 1.05,
|
299 |
+
t_max: float = 1.25,
|
300 |
+
N: int = 10,
|
301 |
+
alpha_threshold: float = 0.1,
|
302 |
+
) -> float:
|
303 |
+
"""Calculate Scale-Invariant Boundary Recall Score for mask-based ground-truth.
|
304 |
+
|
305 |
+
Args:
|
306 |
+
----
|
307 |
+
predicted_depth (np.ndarray): Predicted depth matrix.
|
308 |
+
target_mask (np.ndarray): Ground truth binary mask.
|
309 |
+
t_min (float, optional): Minimum threshold. Defaults to 1.05.
|
310 |
+
t_max (float, optional): Maximum threshold. Defaults to 1.25.
|
311 |
+
N (int, optional): Number of thresholds. Defaults to 10.
|
312 |
+
alpha_threshold (float, optional): Threshold for alpha masking. Defaults to 0.1.
|
313 |
+
|
314 |
+
Returns:
|
315 |
+
-------
|
316 |
+
float: Scale-Invariant Boundary Recall Score.
|
317 |
+
|
318 |
+
"""
|
319 |
+
assert predicted_depth.ndim == target_mask.ndim == 2
|
320 |
+
thresholds, weights = get_thresholds_and_weights(t_min, t_max, N)
|
321 |
+
thresholded_target = target_mask > alpha_threshold
|
322 |
+
|
323 |
+
recall_scores = np.array(
|
324 |
+
[
|
325 |
+
edge_recall_matting(
|
326 |
+
invert_depth(predicted_depth), thresholded_target, t=float(t)
|
327 |
+
)
|
328 |
+
for t in thresholds
|
329 |
+
]
|
330 |
+
)
|
331 |
+
weighted_recall = np.sum(recall_scores * weights)
|
332 |
+
return weighted_recall
|
src/depth_pro/eval/dis5k_sample_list.txt
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DIS5K/DIS-TE1/im/12#Graphics#4#TrafficSign#8245751856_821be14f86_o.jpg
|
2 |
+
DIS5K/DIS-TE1/im/13#Insect#4#Butterfly#16023994688_7ff8cdccb1_o.jpg
|
3 |
+
DIS5K/DIS-TE1/im/14#Kitchenware#4#Kitchenware#IMG_20210520_205538.jpg
|
4 |
+
DIS5K/DIS-TE1/im/14#Kitchenware#8#SweetStand#4848284981_fc90f54b50_o.jpg
|
5 |
+
DIS5K/DIS-TE1/im/17#Non-motor Vehicle#4#Cart#15012855035_d10b57014f_o.jpg
|
6 |
+
DIS5K/DIS-TE1/im/2#Aircraft#5#Kite#13104545564_5afceec9bd_o.jpg
|
7 |
+
DIS5K/DIS-TE1/im/20#Sports#10#Skateboarding#8472763540_bb2390e928_o.jpg
|
8 |
+
DIS5K/DIS-TE1/im/21#Tool#14#Sword#32473146960_dcc6b77848_o.jpg
|
9 |
+
DIS5K/DIS-TE1/im/21#Tool#15#Tapeline#9680492386_2d2020f282_o.jpg
|
10 |
+
DIS5K/DIS-TE1/im/21#Tool#4#Flag#507752845_ef852100f0_o.jpg
|
11 |
+
DIS5K/DIS-TE1/im/21#Tool#6#Key#11966089533_3becd78b44_o.jpg
|
12 |
+
DIS5K/DIS-TE1/im/21#Tool#8#Scale#31946428472_d28def471b_o.jpg
|
13 |
+
DIS5K/DIS-TE1/im/22#Weapon#4#Rifle#8472656430_3eb908b211_o.jpg
|
14 |
+
DIS5K/DIS-TE1/im/8#Electronics#3#Earphone#1177468301_641df8c267_o.jpg
|
15 |
+
DIS5K/DIS-TE1/im/8#Electronics#9#MusicPlayer#2235782872_7d47847bb4_o.jpg
|
16 |
+
DIS5K/DIS-TE2/im/11#Furniture#13#Ladder#3878434417_2ed740586e_o.jpg
|
17 |
+
DIS5K/DIS-TE2/im/13#Insect#1#Ant#27047700955_3b3a1271f8_o.jpg
|
18 |
+
DIS5K/DIS-TE2/im/13#Insect#11#Spider#5567179191_38d1f65589_o.jpg
|
19 |
+
DIS5K/DIS-TE2/im/13#Insect#8#Locust#5237933769_e6687c05e4_o.jpg
|
20 |
+
DIS5K/DIS-TE2/im/14#Kitchenware#2#DishRack#70838854_40cf689da7_o.jpg
|
21 |
+
DIS5K/DIS-TE2/im/14#Kitchenware#8#SweetStand#8467929412_fef7f4275d_o.jpg
|
22 |
+
DIS5K/DIS-TE2/im/16#Music Instrument#2#Harp#28058219806_28e05ff24a_o.jpg
|
23 |
+
DIS5K/DIS-TE2/im/17#Non-motor Vehicle#1#BabyCarriage#29794777180_2e1695a0cf_o.jpg
|
24 |
+
DIS5K/DIS-TE2/im/19#Ship#3#Sailboat#22442908623_5977e3becf_o.jpg
|
25 |
+
DIS5K/DIS-TE2/im/2#Aircraft#5#Kite#44654358051_1400e71cc4_o.jpg
|
26 |
+
DIS5K/DIS-TE2/im/21#Tool#11#Stand#IMG_20210520_205442.jpg
|
27 |
+
DIS5K/DIS-TE2/im/21#Tool#17#Tripod#9318977876_34615ec9a0_o.jpg
|
28 |
+
DIS5K/DIS-TE2/im/5#Artifact#3#Handcraft#50860882577_8482143b1b_o.jpg
|
29 |
+
DIS5K/DIS-TE2/im/8#Electronics#10#Robot#3093360210_fee54dc5c5_o.jpg
|
30 |
+
DIS5K/DIS-TE2/im/8#Electronics#6#Microphone#47411477652_6da66cbc10_o.jpg
|
31 |
+
DIS5K/DIS-TE3/im/14#Kitchenware#4#Kitchenware#2451122898_ef883175dd_o.jpg
|
32 |
+
DIS5K/DIS-TE3/im/15#Machine#4#SewingMachine#9311164128_97ba1d3947_o.jpg
|
33 |
+
DIS5K/DIS-TE3/im/16#Music Instrument#2#Harp#7670920550_59e992fd7b_o.jpg
|
34 |
+
DIS5K/DIS-TE3/im/17#Non-motor Vehicle#1#BabyCarriage#8389984877_1fddf8715c_o.jpg
|
35 |
+
DIS5K/DIS-TE3/im/17#Non-motor Vehicle#3#Carriage#5947122724_98e0fc3d1f_o.jpg
|
36 |
+
DIS5K/DIS-TE3/im/2#Aircraft#2#Balloon#2487168092_641505883f_o.jpg
|
37 |
+
DIS5K/DIS-TE3/im/2#Aircraft#4#Helicopter#8401177591_06c71c8df2_o.jpg
|
38 |
+
DIS5K/DIS-TE3/im/20#Sports#1#Archery#12520003103_faa43ea3e0_o.jpg
|
39 |
+
DIS5K/DIS-TE3/im/21#Tool#11#Stand#IMG_20210709_221507.jpg
|
40 |
+
DIS5K/DIS-TE3/im/21#Tool#2#Clip#5656649687_63d0c6696d_o.jpg
|
41 |
+
DIS5K/DIS-TE3/im/21#Tool#6#Key#12878459244_6387a140ea_o.jpg
|
42 |
+
DIS5K/DIS-TE3/im/3#Aquatic#1#Lobster#109214461_f52b4b6093_o.jpg
|
43 |
+
DIS5K/DIS-TE3/im/4#Architecture#19#Windmill#20195851863_2627117e0e_o.jpg
|
44 |
+
DIS5K/DIS-TE3/im/5#Artifact#2#Cage#5821476369_ea23927487_o.jpg
|
45 |
+
DIS5K/DIS-TE3/im/8#Electronics#7#MobileHolder#49732997896_7f53c290b5_o.jpg
|
46 |
+
DIS5K/DIS-TE4/im/13#Insect#6#Centipede#15302179708_a267850881_o.jpg
|
47 |
+
DIS5K/DIS-TE4/im/17#Non-motor Vehicle#11#Tricycle#5771069105_a3aef6f665_o.jpg
|
48 |
+
DIS5K/DIS-TE4/im/17#Non-motor Vehicle#2#Bicycle#4245936196_fdf812dcb7_o.jpg
|
49 |
+
DIS5K/DIS-TE4/im/17#Non-motor Vehicle#9#ShoppingCart#4674052920_a5b7a2b236_o.jpg
|
50 |
+
DIS5K/DIS-TE4/im/18#Plant#1#Bonsai#3539420884_ca8973e2c0_o.jpg
|
51 |
+
DIS5K/DIS-TE4/im/2#Aircraft#6#Parachute#33590416634_9d6f2325e7_o.jpg
|
52 |
+
DIS5K/DIS-TE4/im/20#Sports#1#Archery#46924476515_0be1caa684_o.jpg
|
53 |
+
DIS5K/DIS-TE4/im/20#Sports#8#Racket#19337607166_dd1985fb59_o.jpg
|
54 |
+
DIS5K/DIS-TE4/im/21#Tool#6#Key#3193329588_839b0c74ce_o.jpg
|
55 |
+
DIS5K/DIS-TE4/im/5#Artifact#2#Cage#5821886526_0573ba2d0d_o.jpg
|
56 |
+
DIS5K/DIS-TE4/im/5#Artifact#3#Handcraft#50105138282_3c1d02c968_o.jpg
|
57 |
+
DIS5K/DIS-TE4/im/8#Electronics#1#Antenna#4305034305_874f21a701_o.jpg
|
58 |
+
DIS5K/DIS-TR/im/1#Accessories#1#Bag#15554964549_3105e51b6f_o.jpg
|
59 |
+
DIS5K/DIS-TR/im/1#Accessories#1#Bag#41104261980_098a6c4a56_o.jpg
|
60 |
+
DIS5K/DIS-TR/im/1#Accessories#2#Clothes#2284764037_871b2e8ca4_o.jpg
|
61 |
+
DIS5K/DIS-TR/im/1#Accessories#3#Eyeglasses#1824643784_70d0134156_o.jpg
|
62 |
+
DIS5K/DIS-TR/im/1#Accessories#3#Eyeglasses#3590020230_37b09a29b3_o.jpg
|
63 |
+
DIS5K/DIS-TR/im/1#Accessories#3#Eyeglasses#4809652879_4da8a69f3b_o.jpg
|
64 |
+
DIS5K/DIS-TR/im/1#Accessories#3#Eyeglasses#792204934_f9b28f99b4_o.jpg
|
65 |
+
DIS5K/DIS-TR/im/1#Accessories#5#Jewelry#13909132974_c4750c5fb7_o.jpg
|
66 |
+
DIS5K/DIS-TR/im/1#Accessories#7#Shoe#2483391615_9199ece8d6_o.jpg
|
67 |
+
DIS5K/DIS-TR/im/1#Accessories#8#Watch#4343266960_f6633b029b_o.jpg
|
68 |
+
DIS5K/DIS-TR/im/10#Frame#2#BicycleFrame#17897573_42964dd104_o.jpg
|
69 |
+
DIS5K/DIS-TR/im/10#Frame#5#Rack#15898634812_64807069ff_o.jpg
|
70 |
+
DIS5K/DIS-TR/im/10#Frame#5#Rack#23928546819_c184cb0b60_o.jpg
|
71 |
+
DIS5K/DIS-TR/im/11#Furniture#19#Shower#6189119596_77bcfe80ee_o.jpg
|
72 |
+
DIS5K/DIS-TR/im/11#Furniture#2#Bench#3263647075_9306e280b5_o.jpg
|
73 |
+
DIS5K/DIS-TR/im/11#Furniture#5#CoatHanger#12774091054_cd5ff520ef_o.jpg
|
74 |
+
DIS5K/DIS-TR/im/11#Furniture#6#DentalChair#13878156865_d0439dcb32_o.jpg
|
75 |
+
DIS5K/DIS-TR/im/11#Furniture#9#Easel#5861024714_2070cd480c_o.jpg
|
76 |
+
DIS5K/DIS-TR/im/12#Graphics#4#TrafficSign#40621867334_f3c32ec189_o.jpg
|
77 |
+
DIS5K/DIS-TR/im/13#Insect#1#Ant#3295038190_db5dd0d4f4_o.jpg
|
78 |
+
DIS5K/DIS-TR/im/13#Insect#10#Mosquito#24341339_a88a1dad4c_o.jpg
|
79 |
+
DIS5K/DIS-TR/im/13#Insect#11#Spider#27171518270_63b78069ff_o.jpg
|
80 |
+
DIS5K/DIS-TR/im/13#Insect#11#Spider#49925050281_fa727c154e_o.jpg
|
81 |
+
DIS5K/DIS-TR/im/13#Insect#2#Beatle#279616486_2f1e64f591_o.jpg
|
82 |
+
DIS5K/DIS-TR/im/13#Insect#3#Bee#43892067695_82cf3e536b_o.jpg
|
83 |
+
DIS5K/DIS-TR/im/13#Insect#6#Centipede#20874281788_3e15c90a1c_o.jpg
|
84 |
+
DIS5K/DIS-TR/im/13#Insect#7#Dragonfly#14106671120_1b824d77e4_o.jpg
|
85 |
+
DIS5K/DIS-TR/im/13#Insect#8#Locust#21637491048_676ef7c9f7_o.jpg
|
86 |
+
DIS5K/DIS-TR/im/13#Insect#9#Mantis#1381120202_9dff6987b2_o.jpg
|
87 |
+
DIS5K/DIS-TR/im/14#Kitchenware#1#Cup#12812517473_327d6474b8_o.jpg
|
88 |
+
DIS5K/DIS-TR/im/14#Kitchenware#10#WineGlass#6402491641_389275d4d1_o.jpg
|
89 |
+
DIS5K/DIS-TR/im/14#Kitchenware#3#Hydrovalve#3129932040_8c05825004_o.jpg
|
90 |
+
DIS5K/DIS-TR/im/14#Kitchenware#4#Kitchenware#2881934780_87d5218ebb_o.jpg
|
91 |
+
DIS5K/DIS-TR/im/14#Kitchenware#4#Kitchenware#IMG_20210520_205527.jpg
|
92 |
+
DIS5K/DIS-TR/im/14#Kitchenware#6#Spoon#32989113501_b69eccf0df_o.jpg
|
93 |
+
DIS5K/DIS-TR/im/14#Kitchenware#8#SweetStand#2867322189_c56d1e0b87_o.jpg
|
94 |
+
DIS5K/DIS-TR/im/15#Machine#1#Gear#19217846720_f5f2807475_o.jpg
|
95 |
+
DIS5K/DIS-TR/im/15#Machine#2#Machine#1620160659_9571b7a7ab_o.jpg
|
96 |
+
DIS5K/DIS-TR/im/16#Music Instrument#2#Harp#6012801603_1a6e2c16a6_o.jpg
|
97 |
+
DIS5K/DIS-TR/im/16#Music Instrument#5#Trombone#8683292118_d223c17ccb_o.jpg
|
98 |
+
DIS5K/DIS-TR/im/16#Music Instrument#6#Trumpet#8393262740_b8c216142c_o.jpg
|
99 |
+
DIS5K/DIS-TR/im/16#Music Instrument#8#Violin#1511267391_40e4949d68_o.jpg
|
100 |
+
DIS5K/DIS-TR/im/17#Non-motor Vehicle#1#BabyCarriage#6989512997_38b3dbc88b_o.jpg
|
101 |
+
DIS5K/DIS-TR/im/17#Non-motor Vehicle#12#Wheel#14627183228_b2d68cf501_o.jpg
|
102 |
+
DIS5K/DIS-TR/im/17#Non-motor Vehicle#12#Wheel#2932226475_1b2403e549_o.jpg
|
103 |
+
DIS5K/DIS-TR/im/17#Non-motor Vehicle#12#Wheel#5420155648_86459905b8_o.jpg
|
104 |
+
DIS5K/DIS-TR/im/17#Non-motor Vehicle#2#Bicycle#IMG_20210513_134904.jpg
|
105 |
+
DIS5K/DIS-TR/im/17#Non-motor Vehicle#3#Carriage#3311962551_6f211b7bd6_o.jpg
|
106 |
+
DIS5K/DIS-TR/im/17#Non-motor Vehicle#4#Cart#2609732026_baf7fff3a1_o.jpg
|
107 |
+
DIS5K/DIS-TR/im/17#Non-motor Vehicle#5#Handcart#5821282211_201cefeaf2_o.jpg
|
108 |
+
DIS5K/DIS-TR/im/17#Non-motor Vehicle#7#Mower#5779003232_3bb3ae531a_o.jpg
|
109 |
+
DIS5K/DIS-TR/im/17#Non-motor Vehicle#9#ShoppingCart#10051622843_ace07e32b8_o.jpg
|
110 |
+
DIS5K/DIS-TR/im/17#Non-motor Vehicle#9#ShoppingCart#8075259294_f23e243849_o.jpg
|
111 |
+
DIS5K/DIS-TR/im/18#Plant#2#Tree#44800999741_e377e16dbb_o.jpg
|
112 |
+
DIS5K/DIS-TR/im/2#Aircraft#1#Airplane#2631761913_3ac67d0223_o.jpg
|
113 |
+
DIS5K/DIS-TR/im/2#Aircraft#1#Airplane#37707911566_e908a261b6_o.jpg
|
114 |
+
DIS5K/DIS-TR/im/2#Aircraft#3#HangGlider#2557220131_b8506920c5_o.jpg
|
115 |
+
DIS5K/DIS-TR/im/2#Aircraft#4#Helicopter#6215659280_5dbd9b4546_o.jpg
|
116 |
+
DIS5K/DIS-TR/im/2#Aircraft#6#Parachute#20185790493_e56fcaf8c6_o.jpg
|
117 |
+
DIS5K/DIS-TR/im/20#Sports#1#Archery#3871269982_ae4c59a7eb_o.jpg
|
118 |
+
DIS5K/DIS-TR/im/20#Sports#9#RockClimbing#9662433268_51299bc50e_o.jpg
|
119 |
+
DIS5K/DIS-TR/im/21#Tool#14#Sword#26258479365_2950d7fa37_o.jpg
|
120 |
+
DIS5K/DIS-TR/im/21#Tool#15#Tapeline#15505703447_e0fdeaa5a6_o.jpg
|
121 |
+
DIS5K/DIS-TR/im/21#Tool#4#Flag#26678602024_9b665742de_o.jpg
|
122 |
+
DIS5K/DIS-TR/im/21#Tool#4#Flag#5774823110_d603ce3cc8_o.jpg
|
123 |
+
DIS5K/DIS-TR/im/21#Tool#5#Hook#6867989814_dba18d673c_o.jpg
|
124 |
+
DIS5K/DIS-TR/im/22#Weapon#4#Rifle#4451713125_cd91719189_o.jpg
|
125 |
+
DIS5K/DIS-TR/im/3#Aquatic#2#Seadragon#4910944581_913139b238_o.jpg
|
126 |
+
DIS5K/DIS-TR/im/4#Architecture#12#Scaffold#3661448960_8aff24cc4d_o.jpg
|
127 |
+
DIS5K/DIS-TR/im/4#Architecture#13#Sculpture#6385318715_9a88d4eba7_o.jpg
|
128 |
+
DIS5K/DIS-TR/im/4#Architecture#17#Well#5011603479_75cf42808a_o.jpg
|
129 |
+
DIS5K/DIS-TR/im/5#Artifact#2#Cage#4892828841_7f1bc05682_o.jpg
|
130 |
+
DIS5K/DIS-TR/im/5#Artifact#3#Handcraft#15404211628_9e9ff2ce2e_o.jpg
|
131 |
+
DIS5K/DIS-TR/im/5#Artifact#3#Handcraft#3200169865_7c84cfcccf_o.jpg
|
132 |
+
DIS5K/DIS-TR/im/5#Artifact#3#Handcraft#5859295071_c217e7c22f_o.jpg
|
133 |
+
DIS5K/DIS-TR/im/6#Automobile#10#SteeringWheel#17200338026_f1e2122d8e_o.jpg
|
134 |
+
DIS5K/DIS-TR/im/6#Automobile#3#Car#3780893425_1a7d275e09_o.jpg
|
135 |
+
DIS5K/DIS-TR/im/6#Automobile#5#Crane#15282506502_1b1132a7c3_o.jpg
|
136 |
+
DIS5K/DIS-TR/im/7#Electrical#1#Cable#16767791875_8e6df41752_o.jpg
|
137 |
+
DIS5K/DIS-TR/im/7#Electrical#1#Cable#3291433361_38747324c4_o.jpg
|
138 |
+
DIS5K/DIS-TR/im/7#Electrical#1#Cable#4195104238_12a754c61a_o.jpg
|
139 |
+
DIS5K/DIS-TR/im/7#Electrical#1#Cable#49645415132_61e5664ecf_o.jpg
|
140 |
+
DIS5K/DIS-TR/im/7#Electrical#1#Cable#IMG_20210521_232406.jpg
|
141 |
+
DIS5K/DIS-TR/im/7#Electrical#10#UtilityPole#3298312021_92f431e3e9_o.jpg
|
142 |
+
DIS5K/DIS-TR/im/7#Electrical#10#UtilityPole#47950134773_fbfff63f4e_o.jpg
|
143 |
+
DIS5K/DIS-TR/im/7#Electrical#11#VacuumCleaner#5448403677_6a29e21881_o.jpg
|
144 |
+
DIS5K/DIS-TR/im/7#Electrical#2#CeilingLamp#611568868_680ed5d39f_o.jpg
|
145 |
+
DIS5K/DIS-TR/im/7#Electrical#3#Fan#3391683115_990525a693_o.jpg
|
146 |
+
DIS5K/DIS-TR/im/7#Electrical#6#StreetLamp#150049122_0692266618_o.jpg
|
147 |
+
DIS5K/DIS-TR/im/7#Electrical#9#TransmissionTower#31433908671_7e7e277dfe_o.jpg
|
148 |
+
DIS5K/DIS-TR/im/8#Electronics#1#Antenna#8727884873_e0622ee5c4_o.jpg
|
149 |
+
DIS5K/DIS-TR/im/8#Electronics#2#Camcorder#4172690390_7e5f280ace_o.jpg
|
150 |
+
DIS5K/DIS-TR/im/8#Electronics#3#Earphone#413984555_f290febdf5_o.jpg
|
151 |
+
DIS5K/DIS-TR/im/8#Electronics#5#Headset#30574225373_3717ed9fa4_o.jpg
|
152 |
+
DIS5K/DIS-TR/im/8#Electronics#6#Microphone#538006482_4aae4f5bd6_o.jpg
|
153 |
+
DIS5K/DIS-TR/im/8#Electronics#9#MusicPlayer#1306012480_2ea80d2afd_o.jpg
|
154 |
+
DIS5K/DIS-TR/im/9#Entertainment#1#GymEquipment#33071754135_8f3195cbd1_o.jpg
|
155 |
+
DIS5K/DIS-TR/im/9#Entertainment#2#KidsPlayground#2305807849_be53d724ea_o.jpg
|
156 |
+
DIS5K/DIS-TR/im/9#Entertainment#2#KidsPlayground#3862040422_5bbf903204_o.jpg
|
157 |
+
DIS5K/DIS-TR/im/9#Entertainment#3#OutdoorFitnessEquipment#10814507005_3dacaa28b3_o.jpg
|
158 |
+
DIS5K/DIS-TR/im/9#Entertainment#4#FerrisWheel#81640293_4b0ee62040_o.jpg
|
159 |
+
DIS5K/DIS-TR/im/9#Entertainment#5#Swing#49867339188_08073f4b76_o.jpg
|
160 |
+
DIS5K/DIS-VD/im/1#Accessories#1#Bag#6815402415_e01c1a41e6_o.jpg
|
161 |
+
DIS5K/DIS-VD/im/1#Accessories#5#Jewelry#2744070193_1486582e8d_o.jpg
|
162 |
+
DIS5K/DIS-VD/im/10#Frame#1#BasketballHoop#IMG_20210521_232650.jpg
|
163 |
+
DIS5K/DIS-VD/im/10#Frame#5#Rack#6156611713_49ebf12b1e_o.jpg
|
164 |
+
DIS5K/DIS-VD/im/11#Furniture#11#Handrail#3276641240_1b84b5af85_o.jpg
|
165 |
+
DIS5K/DIS-VD/im/11#Furniture#13#Ladder#33423266_5391cf47e9_o.jpg
|
166 |
+
DIS5K/DIS-VD/im/11#Furniture#17#Table#3725111755_4fc101e7ab_o.jpg
|
167 |
+
DIS5K/DIS-VD/im/11#Furniture#2#Bench#35556410400_7235b58070_o.jpg
|
168 |
+
DIS5K/DIS-VD/im/11#Furniture#4#Chair#3301769985_e49de6739f_o.jpg
|
169 |
+
DIS5K/DIS-VD/im/11#Furniture#6#DentalChair#23811071619_2a95c3a688_o.jpg
|
170 |
+
DIS5K/DIS-VD/im/11#Furniture#9#Easel#8322807354_df6d56542e_o.jpg
|
171 |
+
DIS5K/DIS-VD/im/13#Insect#10#Mosquito#12391674863_0cdf430d3f_o.jpg
|
172 |
+
DIS5K/DIS-VD/im/13#Insect#7#Dragonfly#14693028899_344ea118f2_o.jpg
|
173 |
+
DIS5K/DIS-VD/im/14#Kitchenware#10#WineGlass#4450148455_8f460f541a_o.jpg
|
174 |
+
DIS5K/DIS-VD/im/14#Kitchenware#3#Hydrovalve#IMG_20210520_203410.jpg
|
175 |
+
DIS5K/DIS-VD/im/15#Machine#3#PlowHarrow#34521712846_df4babb024_o.jpg
|
176 |
+
DIS5K/DIS-VD/im/16#Music Instrument#5#Trombone#6222242743_e7189405cd_o.jpg
|
177 |
+
DIS5K/DIS-VD/im/17#Non-motor Vehicle#12#Wheel#25677578797_ea47e1d9e8_o.jpg
|
178 |
+
DIS5K/DIS-VD/im/17#Non-motor Vehicle#2#Bicycle#5153474856_21560b081b_o.jpg
|
179 |
+
DIS5K/DIS-VD/im/17#Non-motor Vehicle#7#Mower#16992510572_8a6ff27398_o.jpg
|
180 |
+
DIS5K/DIS-VD/im/19#Ship#2#Canoe#40571458163_7faf8b73d9_o.jpg
|
181 |
+
DIS5K/DIS-VD/im/2#Aircraft#1#Airplane#4270588164_66a619e834_o.jpg
|
182 |
+
DIS5K/DIS-VD/im/2#Aircraft#4#Helicopter#86789665_650b94b2ee_o.jpg
|
183 |
+
DIS5K/DIS-VD/im/20#Sports#14#Wakesurfing#5589577652_5061c168d2_o.jpg
|
184 |
+
DIS5K/DIS-VD/im/21#Tool#10#Spade#37018312543_63b21b0784_o.jpg
|
185 |
+
DIS5K/DIS-VD/im/21#Tool#14#Sword#24789047250_42df9bf422_o.jpg
|
186 |
+
DIS5K/DIS-VD/im/21#Tool#18#Umbrella#IMG_20210513_140445.jpg
|
187 |
+
DIS5K/DIS-VD/im/21#Tool#6#Key#43939732715_5a6e28b518_o.jpg
|
188 |
+
DIS5K/DIS-VD/im/22#Weapon#1#Cannon#12758066705_90b54295e7_o.jpg
|
189 |
+
DIS5K/DIS-VD/im/22#Weapon#4#Rifle#8019368790_fb6dc469a7_o.jpg
|
190 |
+
DIS5K/DIS-VD/im/3#Aquatic#5#Shrimp#2582833427_7a99e7356e_o.jpg
|
191 |
+
DIS5K/DIS-VD/im/4#Architecture#12#Scaffold#1013402687_590750354e_o.jpg
|
192 |
+
DIS5K/DIS-VD/im/4#Architecture#13#Sculpture#17176841759_272a3ed6e3_o.jpg
|
193 |
+
DIS5K/DIS-VD/im/4#Architecture#14#Stair#15079108505_0d11281624_o.jpg
|
194 |
+
DIS5K/DIS-VD/im/4#Architecture#19#Windmill#2928111082_ceb3051c04_o.jpg
|
195 |
+
DIS5K/DIS-VD/im/4#Architecture#3#Crack#3551574032_17dd106d31_o.jpg
|
196 |
+
DIS5K/DIS-VD/im/4#Architecture#5#GasStation#4564307581_c3069bdc62_o.jpg
|
197 |
+
DIS5K/DIS-VD/im/4#Architecture#8#ObservationTower#2704526950_d4f0ddc807_o.jpg
|
198 |
+
DIS5K/DIS-VD/im/5#Artifact#3#Handcraft#10873642323_1bafce3aa5_o.jpg
|
199 |
+
DIS5K/DIS-VD/im/6#Automobile#11#Tractor#8594504006_0c2c557d85_o.jpg
|
200 |
+
DIS5K/DIS-VD/im/8#Electronics#3#Earphone#8106454803_1178d867cc_o.jpg
|
src/depth_pro/network/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
2 |
+
"""Depth Pro network blocks."""
|
src/depth_pro/network/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (197 Bytes). View file
|
|
src/depth_pro/network/__pycache__/decoder.cpython-39.pyc
ADDED
Binary file (5.17 kB). View file
|
|
src/depth_pro/network/__pycache__/encoder.cpython-39.pyc
ADDED
Binary file (7.28 kB). View file
|
|
src/depth_pro/network/__pycache__/fov.cpython-39.pyc
ADDED
Binary file (2.08 kB). View file
|
|
src/depth_pro/network/__pycache__/vit.cpython-39.pyc
ADDED
Binary file (2.81 kB). View file
|
|
src/depth_pro/network/__pycache__/vit_factory.cpython-39.pyc
ADDED
Binary file (2.94 kB). View file
|
|
src/depth_pro/network/decoder.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
2 |
+
|
3 |
+
Dense Prediction Transformer Decoder architecture.
|
4 |
+
|
5 |
+
Implements a variant of Vision Transformers for Dense Prediction, https://arxiv.org/abs/2103.13413
|
6 |
+
"""
|
7 |
+
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
from typing import Iterable
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
|
15 |
+
|
16 |
+
class MultiresConvDecoder(nn.Module):
|
17 |
+
"""Decoder for multi-resolution encodings."""
|
18 |
+
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
dims_encoder: Iterable[int],
|
22 |
+
dim_decoder: int,
|
23 |
+
):
|
24 |
+
"""Initialize multiresolution convolutional decoder.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
----
|
28 |
+
dims_encoder: Expected dims at each level from the encoder.
|
29 |
+
dim_decoder: Dim of decoder features.
|
30 |
+
|
31 |
+
"""
|
32 |
+
super().__init__()
|
33 |
+
self.dims_encoder = list(dims_encoder)
|
34 |
+
self.dim_decoder = dim_decoder
|
35 |
+
self.dim_out = dim_decoder
|
36 |
+
|
37 |
+
num_encoders = len(self.dims_encoder)
|
38 |
+
|
39 |
+
# At the highest resolution, i.e. level 0, we apply projection w/ 1x1 convolution
|
40 |
+
# when the dimensions mismatch. Otherwise we do not do anything, which is
|
41 |
+
# the default behavior of monodepth.
|
42 |
+
conv0 = (
|
43 |
+
nn.Conv2d(self.dims_encoder[0], dim_decoder, kernel_size=1, bias=False)
|
44 |
+
if self.dims_encoder[0] != dim_decoder
|
45 |
+
else nn.Identity()
|
46 |
+
)
|
47 |
+
|
48 |
+
convs = [conv0]
|
49 |
+
for i in range(1, num_encoders):
|
50 |
+
convs.append(
|
51 |
+
nn.Conv2d(
|
52 |
+
self.dims_encoder[i],
|
53 |
+
dim_decoder,
|
54 |
+
kernel_size=3,
|
55 |
+
stride=1,
|
56 |
+
padding=1,
|
57 |
+
bias=False,
|
58 |
+
)
|
59 |
+
)
|
60 |
+
|
61 |
+
self.convs = nn.ModuleList(convs)
|
62 |
+
|
63 |
+
fusions = []
|
64 |
+
for i in range(num_encoders):
|
65 |
+
fusions.append(
|
66 |
+
FeatureFusionBlock2d(
|
67 |
+
num_features=dim_decoder,
|
68 |
+
deconv=(i != 0),
|
69 |
+
batch_norm=False,
|
70 |
+
)
|
71 |
+
)
|
72 |
+
self.fusions = nn.ModuleList(fusions)
|
73 |
+
|
74 |
+
def forward(self, encodings: torch.Tensor) -> torch.Tensor:
|
75 |
+
"""Decode the multi-resolution encodings."""
|
76 |
+
num_levels = len(encodings)
|
77 |
+
num_encoders = len(self.dims_encoder)
|
78 |
+
|
79 |
+
if num_levels != num_encoders:
|
80 |
+
raise ValueError(
|
81 |
+
f"Got encoder output levels={num_levels}, expected levels={num_encoders+1}."
|
82 |
+
)
|
83 |
+
|
84 |
+
# Project features of different encoder dims to the same decoder dim.
|
85 |
+
# Fuse features from the lowest resolution (num_levels-1)
|
86 |
+
# to the highest (0).
|
87 |
+
features = self.convs[-1](encodings[-1])
|
88 |
+
lowres_features = features
|
89 |
+
features = self.fusions[-1](features)
|
90 |
+
for i in range(num_levels - 2, -1, -1):
|
91 |
+
features_i = self.convs[i](encodings[i])
|
92 |
+
features = self.fusions[i](features, features_i)
|
93 |
+
return features, lowres_features
|
94 |
+
|
95 |
+
|
96 |
+
class ResidualBlock(nn.Module):
|
97 |
+
"""Generic implementation of residual blocks.
|
98 |
+
|
99 |
+
This implements a generic residual block from
|
100 |
+
He et al. - Identity Mappings in Deep Residual Networks (2016),
|
101 |
+
https://arxiv.org/abs/1603.05027
|
102 |
+
which can be further customized via factory functions.
|
103 |
+
"""
|
104 |
+
|
105 |
+
def __init__(self, residual: nn.Module, shortcut: nn.Module | None = None) -> None:
|
106 |
+
"""Initialize ResidualBlock."""
|
107 |
+
super().__init__()
|
108 |
+
self.residual = residual
|
109 |
+
self.shortcut = shortcut
|
110 |
+
|
111 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
112 |
+
"""Apply residual block."""
|
113 |
+
delta_x = self.residual(x)
|
114 |
+
|
115 |
+
if self.shortcut is not None:
|
116 |
+
x = self.shortcut(x)
|
117 |
+
|
118 |
+
return x + delta_x
|
119 |
+
|
120 |
+
|
121 |
+
class FeatureFusionBlock2d(nn.Module):
|
122 |
+
"""Feature fusion for DPT."""
|
123 |
+
|
124 |
+
def __init__(
|
125 |
+
self,
|
126 |
+
num_features: int,
|
127 |
+
deconv: bool = False,
|
128 |
+
batch_norm: bool = False,
|
129 |
+
):
|
130 |
+
"""Initialize feature fusion block.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
----
|
134 |
+
num_features: Input and output dimensions.
|
135 |
+
deconv: Whether to use deconv before the final output conv.
|
136 |
+
batch_norm: Whether to use batch normalization in resnet blocks.
|
137 |
+
|
138 |
+
"""
|
139 |
+
super().__init__()
|
140 |
+
|
141 |
+
self.resnet1 = self._residual_block(num_features, batch_norm)
|
142 |
+
self.resnet2 = self._residual_block(num_features, batch_norm)
|
143 |
+
|
144 |
+
self.use_deconv = deconv
|
145 |
+
if deconv:
|
146 |
+
self.deconv = nn.ConvTranspose2d(
|
147 |
+
in_channels=num_features,
|
148 |
+
out_channels=num_features,
|
149 |
+
kernel_size=2,
|
150 |
+
stride=2,
|
151 |
+
padding=0,
|
152 |
+
bias=False,
|
153 |
+
)
|
154 |
+
|
155 |
+
self.out_conv = nn.Conv2d(
|
156 |
+
num_features,
|
157 |
+
num_features,
|
158 |
+
kernel_size=1,
|
159 |
+
stride=1,
|
160 |
+
padding=0,
|
161 |
+
bias=True,
|
162 |
+
)
|
163 |
+
|
164 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
165 |
+
|
166 |
+
def forward(self, x0: torch.Tensor, x1: torch.Tensor | None = None) -> torch.Tensor:
|
167 |
+
"""Process and fuse input features."""
|
168 |
+
x = x0
|
169 |
+
|
170 |
+
if x1 is not None:
|
171 |
+
res = self.resnet1(x1)
|
172 |
+
x = self.skip_add.add(x, res)
|
173 |
+
|
174 |
+
x = self.resnet2(x)
|
175 |
+
|
176 |
+
if self.use_deconv:
|
177 |
+
x = self.deconv(x)
|
178 |
+
x = self.out_conv(x)
|
179 |
+
|
180 |
+
return x
|
181 |
+
|
182 |
+
@staticmethod
|
183 |
+
def _residual_block(num_features: int, batch_norm: bool):
|
184 |
+
"""Create a residual block."""
|
185 |
+
|
186 |
+
def _create_block(dim: int, batch_norm: bool) -> list[nn.Module]:
|
187 |
+
layers = [
|
188 |
+
nn.ReLU(False),
|
189 |
+
nn.Conv2d(
|
190 |
+
num_features,
|
191 |
+
num_features,
|
192 |
+
kernel_size=3,
|
193 |
+
stride=1,
|
194 |
+
padding=1,
|
195 |
+
bias=not batch_norm,
|
196 |
+
),
|
197 |
+
]
|
198 |
+
if batch_norm:
|
199 |
+
layers.append(nn.BatchNorm2d(dim))
|
200 |
+
return layers
|
201 |
+
|
202 |
+
residual = nn.Sequential(
|
203 |
+
*_create_block(dim=num_features, batch_norm=batch_norm),
|
204 |
+
*_create_block(dim=num_features, batch_norm=batch_norm),
|
205 |
+
)
|
206 |
+
return ResidualBlock(residual)
|
src/depth_pro/network/encoder.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
2 |
+
# DepthProEncoder combining patch and image encoders.
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import math
|
7 |
+
from typing import Iterable, Optional
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
|
14 |
+
class DepthProEncoder(nn.Module):
|
15 |
+
"""DepthPro Encoder.
|
16 |
+
|
17 |
+
An encoder aimed at creating multi-resolution encodings from Vision Transformers.
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
dims_encoder: Iterable[int],
|
23 |
+
patch_encoder: nn.Module,
|
24 |
+
image_encoder: nn.Module,
|
25 |
+
hook_block_ids: Iterable[int],
|
26 |
+
decoder_features: int,
|
27 |
+
):
|
28 |
+
"""Initialize DepthProEncoder.
|
29 |
+
|
30 |
+
The framework
|
31 |
+
1. creates an image pyramid,
|
32 |
+
2. generates overlapping patches with a sliding window at each pyramid level,
|
33 |
+
3. creates batched encodings via vision transformer backbones,
|
34 |
+
4. produces multi-resolution encodings.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
----
|
38 |
+
img_size: Backbone image resolution.
|
39 |
+
dims_encoder: Dimensions of the encoder at different layers.
|
40 |
+
patch_encoder: Backbone used for patches.
|
41 |
+
image_encoder: Backbone used for global image encoder.
|
42 |
+
hook_block_ids: Hooks to obtain intermediate features for the patch encoder model.
|
43 |
+
decoder_features: Number of feature output in the decoder.
|
44 |
+
|
45 |
+
"""
|
46 |
+
super().__init__()
|
47 |
+
|
48 |
+
self.dims_encoder = list(dims_encoder)
|
49 |
+
self.patch_encoder = patch_encoder
|
50 |
+
self.image_encoder = image_encoder
|
51 |
+
self.hook_block_ids = list(hook_block_ids)
|
52 |
+
|
53 |
+
patch_encoder_embed_dim = patch_encoder.embed_dim
|
54 |
+
image_encoder_embed_dim = image_encoder.embed_dim
|
55 |
+
|
56 |
+
self.out_size = int(
|
57 |
+
patch_encoder.patch_embed.img_size[0] // patch_encoder.patch_embed.patch_size[0]
|
58 |
+
)
|
59 |
+
|
60 |
+
def _create_project_upsample_block(
|
61 |
+
dim_in: int,
|
62 |
+
dim_out: int,
|
63 |
+
upsample_layers: int,
|
64 |
+
dim_int: Optional[int] = None,
|
65 |
+
) -> nn.Module:
|
66 |
+
if dim_int is None:
|
67 |
+
dim_int = dim_out
|
68 |
+
# Projection.
|
69 |
+
blocks = [
|
70 |
+
nn.Conv2d(
|
71 |
+
in_channels=dim_in,
|
72 |
+
out_channels=dim_int,
|
73 |
+
kernel_size=1,
|
74 |
+
stride=1,
|
75 |
+
padding=0,
|
76 |
+
bias=False,
|
77 |
+
)
|
78 |
+
]
|
79 |
+
|
80 |
+
# Upsampling.
|
81 |
+
blocks += [
|
82 |
+
nn.ConvTranspose2d(
|
83 |
+
in_channels=dim_int if i == 0 else dim_out,
|
84 |
+
out_channels=dim_out,
|
85 |
+
kernel_size=2,
|
86 |
+
stride=2,
|
87 |
+
padding=0,
|
88 |
+
bias=False,
|
89 |
+
)
|
90 |
+
for i in range(upsample_layers)
|
91 |
+
]
|
92 |
+
|
93 |
+
return nn.Sequential(*blocks)
|
94 |
+
|
95 |
+
self.upsample_latent0 = _create_project_upsample_block(
|
96 |
+
dim_in=patch_encoder_embed_dim,
|
97 |
+
dim_int=self.dims_encoder[0],
|
98 |
+
dim_out=decoder_features,
|
99 |
+
upsample_layers=3,
|
100 |
+
)
|
101 |
+
self.upsample_latent1 = _create_project_upsample_block(
|
102 |
+
dim_in=patch_encoder_embed_dim, dim_out=self.dims_encoder[0], upsample_layers=2
|
103 |
+
)
|
104 |
+
|
105 |
+
self.upsample0 = _create_project_upsample_block(
|
106 |
+
dim_in=patch_encoder_embed_dim, dim_out=self.dims_encoder[1], upsample_layers=1
|
107 |
+
)
|
108 |
+
self.upsample1 = _create_project_upsample_block(
|
109 |
+
dim_in=patch_encoder_embed_dim, dim_out=self.dims_encoder[2], upsample_layers=1
|
110 |
+
)
|
111 |
+
self.upsample2 = _create_project_upsample_block(
|
112 |
+
dim_in=patch_encoder_embed_dim, dim_out=self.dims_encoder[3], upsample_layers=1
|
113 |
+
)
|
114 |
+
|
115 |
+
self.upsample_lowres = nn.ConvTranspose2d(
|
116 |
+
in_channels=image_encoder_embed_dim,
|
117 |
+
out_channels=self.dims_encoder[3],
|
118 |
+
kernel_size=2,
|
119 |
+
stride=2,
|
120 |
+
padding=0,
|
121 |
+
bias=True,
|
122 |
+
)
|
123 |
+
self.fuse_lowres = nn.Conv2d(
|
124 |
+
in_channels=(self.dims_encoder[3] + self.dims_encoder[3]),
|
125 |
+
out_channels=self.dims_encoder[3],
|
126 |
+
kernel_size=1,
|
127 |
+
stride=1,
|
128 |
+
padding=0,
|
129 |
+
bias=True,
|
130 |
+
)
|
131 |
+
|
132 |
+
# Obtain intermediate outputs of the blocks.
|
133 |
+
self.patch_encoder.blocks[self.hook_block_ids[0]].register_forward_hook(
|
134 |
+
self._hook0
|
135 |
+
)
|
136 |
+
self.patch_encoder.blocks[self.hook_block_ids[1]].register_forward_hook(
|
137 |
+
self._hook1
|
138 |
+
)
|
139 |
+
|
140 |
+
def _hook0(self, model, input, output):
|
141 |
+
self.backbone_highres_hook0 = output
|
142 |
+
|
143 |
+
def _hook1(self, model, input, output):
|
144 |
+
self.backbone_highres_hook1 = output
|
145 |
+
|
146 |
+
@property
|
147 |
+
def img_size(self) -> int:
|
148 |
+
"""Return the full image size of the SPN network."""
|
149 |
+
return self.patch_encoder.patch_embed.img_size[0] * 4
|
150 |
+
|
151 |
+
def _create_pyramid(
|
152 |
+
self, x: torch.Tensor
|
153 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
154 |
+
"""Create a 3-level image pyramid."""
|
155 |
+
# Original resolution: 1536 by default.
|
156 |
+
x0 = x
|
157 |
+
|
158 |
+
# Middle resolution: 768 by default.
|
159 |
+
x1 = F.interpolate(
|
160 |
+
x, size=None, scale_factor=0.5, mode="bilinear", align_corners=False
|
161 |
+
)
|
162 |
+
|
163 |
+
# Low resolution: 384 by default, corresponding to the backbone resolution.
|
164 |
+
x2 = F.interpolate(
|
165 |
+
x, size=None, scale_factor=0.25, mode="bilinear", align_corners=False
|
166 |
+
)
|
167 |
+
|
168 |
+
return x0, x1, x2
|
169 |
+
|
170 |
+
def split(self, x: torch.Tensor, overlap_ratio: float = 0.25) -> torch.Tensor:
|
171 |
+
"""Split the input into small patches with sliding window."""
|
172 |
+
patch_size = 384
|
173 |
+
patch_stride = int(patch_size * (1 - overlap_ratio))
|
174 |
+
|
175 |
+
image_size = x.shape[-1]
|
176 |
+
steps = int(math.ceil((image_size - patch_size) / patch_stride)) + 1
|
177 |
+
|
178 |
+
x_patch_list = []
|
179 |
+
for j in range(steps):
|
180 |
+
j0 = j * patch_stride
|
181 |
+
j1 = j0 + patch_size
|
182 |
+
|
183 |
+
for i in range(steps):
|
184 |
+
i0 = i * patch_stride
|
185 |
+
i1 = i0 + patch_size
|
186 |
+
x_patch_list.append(x[..., j0:j1, i0:i1])
|
187 |
+
|
188 |
+
return torch.cat(x_patch_list, dim=0)
|
189 |
+
|
190 |
+
def merge(self, x: torch.Tensor, batch_size: int, padding: int = 3) -> torch.Tensor:
|
191 |
+
"""Merge the patched input into a image with sliding window."""
|
192 |
+
steps = int(math.sqrt(x.shape[0] // batch_size))
|
193 |
+
|
194 |
+
idx = 0
|
195 |
+
|
196 |
+
output_list = []
|
197 |
+
for j in range(steps):
|
198 |
+
output_row_list = []
|
199 |
+
for i in range(steps):
|
200 |
+
output = x[batch_size * idx : batch_size * (idx + 1)]
|
201 |
+
|
202 |
+
if j != 0:
|
203 |
+
output = output[..., padding:, :]
|
204 |
+
if i != 0:
|
205 |
+
output = output[..., :, padding:]
|
206 |
+
if j != steps - 1:
|
207 |
+
output = output[..., :-padding, :]
|
208 |
+
if i != steps - 1:
|
209 |
+
output = output[..., :, :-padding]
|
210 |
+
|
211 |
+
output_row_list.append(output)
|
212 |
+
idx += 1
|
213 |
+
|
214 |
+
output_row = torch.cat(output_row_list, dim=-1)
|
215 |
+
output_list.append(output_row)
|
216 |
+
output = torch.cat(output_list, dim=-2)
|
217 |
+
return output
|
218 |
+
|
219 |
+
def reshape_feature(
|
220 |
+
self, embeddings: torch.Tensor, width, height, cls_token_offset=1
|
221 |
+
):
|
222 |
+
"""Discard class token and reshape 1D feature map to a 2D grid."""
|
223 |
+
b, hw, c = embeddings.shape
|
224 |
+
|
225 |
+
# Remove class token.
|
226 |
+
if cls_token_offset > 0:
|
227 |
+
embeddings = embeddings[:, cls_token_offset:, :]
|
228 |
+
|
229 |
+
# Shape: (batch, height, width, dim) -> (batch, dim, height, width)
|
230 |
+
embeddings = embeddings.reshape(b, height, width, c).permute(0, 3, 1, 2)
|
231 |
+
return embeddings
|
232 |
+
|
233 |
+
def forward(self, x: torch.Tensor) -> list[torch.Tensor]:
|
234 |
+
"""Encode input at multiple resolutions.
|
235 |
+
|
236 |
+
Args:
|
237 |
+
----
|
238 |
+
x (torch.Tensor): Input image.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
-------
|
242 |
+
Multi resolution encoded features.
|
243 |
+
|
244 |
+
"""
|
245 |
+
batch_size = x.shape[0]
|
246 |
+
|
247 |
+
# Step 0: create a 3-level image pyramid.
|
248 |
+
x0, x1, x2 = self._create_pyramid(x)
|
249 |
+
|
250 |
+
# Step 1: split to create batched overlapped mini-images at the backbone (BeiT/ViT/Dino)
|
251 |
+
# resolution.
|
252 |
+
# 5x5 @ 384x384 at the highest resolution (1536x1536).
|
253 |
+
x0_patches = self.split(x0, overlap_ratio=0.25)
|
254 |
+
# 3x3 @ 384x384 at the middle resolution (768x768).
|
255 |
+
x1_patches = self.split(x1, overlap_ratio=0.5)
|
256 |
+
# 1x1 # 384x384 at the lowest resolution (384x384).
|
257 |
+
x2_patches = x2
|
258 |
+
|
259 |
+
# Concatenate all the sliding window patches and form a batch of size (35=5x5+3x3+1x1).
|
260 |
+
x_pyramid_patches = torch.cat(
|
261 |
+
(x0_patches, x1_patches, x2_patches),
|
262 |
+
dim=0,
|
263 |
+
)
|
264 |
+
|
265 |
+
# Step 2: Run the backbone (BeiT) model and get the result of large batch size.
|
266 |
+
x_pyramid_encodings = self.patch_encoder(x_pyramid_patches)
|
267 |
+
x_pyramid_encodings = self.reshape_feature(
|
268 |
+
x_pyramid_encodings, self.out_size, self.out_size
|
269 |
+
)
|
270 |
+
|
271 |
+
# Step 3: merging.
|
272 |
+
# Merge highres latent encoding.
|
273 |
+
x_latent0_encodings = self.reshape_feature(
|
274 |
+
self.backbone_highres_hook0,
|
275 |
+
self.out_size,
|
276 |
+
self.out_size,
|
277 |
+
)
|
278 |
+
x_latent0_features = self.merge(
|
279 |
+
x_latent0_encodings[: batch_size * 5 * 5], batch_size=batch_size, padding=3
|
280 |
+
)
|
281 |
+
|
282 |
+
x_latent1_encodings = self.reshape_feature(
|
283 |
+
self.backbone_highres_hook1,
|
284 |
+
self.out_size,
|
285 |
+
self.out_size,
|
286 |
+
)
|
287 |
+
x_latent1_features = self.merge(
|
288 |
+
x_latent1_encodings[: batch_size * 5 * 5], batch_size=batch_size, padding=3
|
289 |
+
)
|
290 |
+
|
291 |
+
# Split the 35 batch size from pyramid encoding back into 5x5+3x3+1x1.
|
292 |
+
x0_encodings, x1_encodings, x2_encodings = torch.split(
|
293 |
+
x_pyramid_encodings,
|
294 |
+
[len(x0_patches), len(x1_patches), len(x2_patches)],
|
295 |
+
dim=0,
|
296 |
+
)
|
297 |
+
|
298 |
+
# 96x96 feature maps by merging 5x5 @ 24x24 patches with overlaps.
|
299 |
+
x0_features = self.merge(x0_encodings, batch_size=batch_size, padding=3)
|
300 |
+
|
301 |
+
# 48x84 feature maps by merging 3x3 @ 24x24 patches with overlaps.
|
302 |
+
x1_features = self.merge(x1_encodings, batch_size=batch_size, padding=6)
|
303 |
+
|
304 |
+
# 24x24 feature maps.
|
305 |
+
x2_features = x2_encodings
|
306 |
+
|
307 |
+
# Apply the image encoder model.
|
308 |
+
x_global_features = self.image_encoder(x2_patches)
|
309 |
+
x_global_features = self.reshape_feature(
|
310 |
+
x_global_features, self.out_size, self.out_size
|
311 |
+
)
|
312 |
+
|
313 |
+
# Upsample feature maps.
|
314 |
+
x_latent0_features = self.upsample_latent0(x_latent0_features)
|
315 |
+
x_latent1_features = self.upsample_latent1(x_latent1_features)
|
316 |
+
|
317 |
+
x0_features = self.upsample0(x0_features)
|
318 |
+
x1_features = self.upsample1(x1_features)
|
319 |
+
x2_features = self.upsample2(x2_features)
|
320 |
+
|
321 |
+
x_global_features = self.upsample_lowres(x_global_features)
|
322 |
+
x_global_features = self.fuse_lowres(
|
323 |
+
torch.cat((x2_features, x_global_features), dim=1)
|
324 |
+
)
|
325 |
+
|
326 |
+
return [
|
327 |
+
x_latent0_features,
|
328 |
+
x_latent1_features,
|
329 |
+
x0_features,
|
330 |
+
x1_features,
|
331 |
+
x_global_features,
|
332 |
+
]
|
src/depth_pro/network/fov.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
2 |
+
# Field of View network architecture.
|
3 |
+
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
|
11 |
+
class FOVNetwork(nn.Module):
|
12 |
+
"""Field of View estimation network."""
|
13 |
+
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
num_features: int,
|
17 |
+
fov_encoder: Optional[nn.Module] = None,
|
18 |
+
):
|
19 |
+
"""Initialize the Field of View estimation block.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
----
|
23 |
+
num_features: Number of features used.
|
24 |
+
fov_encoder: Optional encoder to bring additional network capacity.
|
25 |
+
|
26 |
+
"""
|
27 |
+
super().__init__()
|
28 |
+
|
29 |
+
# Create FOV head.
|
30 |
+
fov_head0 = [
|
31 |
+
nn.Conv2d(
|
32 |
+
num_features, num_features // 2, kernel_size=3, stride=2, padding=1
|
33 |
+
), # 128 x 24 x 24
|
34 |
+
nn.ReLU(True),
|
35 |
+
]
|
36 |
+
fov_head = [
|
37 |
+
nn.Conv2d(
|
38 |
+
num_features // 2, num_features // 4, kernel_size=3, stride=2, padding=1
|
39 |
+
), # 64 x 12 x 12
|
40 |
+
nn.ReLU(True),
|
41 |
+
nn.Conv2d(
|
42 |
+
num_features // 4, num_features // 8, kernel_size=3, stride=2, padding=1
|
43 |
+
), # 32 x 6 x 6
|
44 |
+
nn.ReLU(True),
|
45 |
+
nn.Conv2d(num_features // 8, 1, kernel_size=6, stride=1, padding=0),
|
46 |
+
]
|
47 |
+
if fov_encoder is not None:
|
48 |
+
self.encoder = nn.Sequential(
|
49 |
+
fov_encoder, nn.Linear(fov_encoder.embed_dim, num_features // 2)
|
50 |
+
)
|
51 |
+
self.downsample = nn.Sequential(*fov_head0)
|
52 |
+
else:
|
53 |
+
fov_head = fov_head0 + fov_head
|
54 |
+
self.head = nn.Sequential(*fov_head)
|
55 |
+
|
56 |
+
def forward(self, x: torch.Tensor, lowres_feature: torch.Tensor) -> torch.Tensor:
|
57 |
+
"""Forward the fov network.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
----
|
61 |
+
x (torch.Tensor): Input image.
|
62 |
+
lowres_feature (torch.Tensor): Low resolution feature.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
-------
|
66 |
+
The field of view tensor.
|
67 |
+
|
68 |
+
"""
|
69 |
+
if hasattr(self, "encoder"):
|
70 |
+
x = F.interpolate(
|
71 |
+
x,
|
72 |
+
size=None,
|
73 |
+
scale_factor=0.25,
|
74 |
+
mode="bilinear",
|
75 |
+
align_corners=False,
|
76 |
+
)
|
77 |
+
x = self.encoder(x)[:, 1:].permute(0, 2, 1)
|
78 |
+
lowres_feature = self.downsample(lowres_feature)
|
79 |
+
x = x.reshape_as(lowres_feature) + lowres_feature
|
80 |
+
else:
|
81 |
+
x = lowres_feature
|
82 |
+
return self.head(x)
|
src/depth_pro/network/vit.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
2 |
+
|
3 |
+
|
4 |
+
try:
|
5 |
+
from timm.layers import resample_abs_pos_embed
|
6 |
+
except ImportError as err:
|
7 |
+
print("ImportError: {0}".format(err))
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.utils.checkpoint import checkpoint
|
11 |
+
|
12 |
+
|
13 |
+
def make_vit_b16_backbone(
|
14 |
+
model,
|
15 |
+
encoder_feature_dims,
|
16 |
+
encoder_feature_layer_ids,
|
17 |
+
vit_features,
|
18 |
+
start_index=1,
|
19 |
+
use_grad_checkpointing=False,
|
20 |
+
) -> nn.Module:
|
21 |
+
"""Make a ViTb16 backbone for the DPT model."""
|
22 |
+
if use_grad_checkpointing:
|
23 |
+
model.set_grad_checkpointing()
|
24 |
+
|
25 |
+
vit_model = nn.Module()
|
26 |
+
vit_model.hooks = encoder_feature_layer_ids
|
27 |
+
vit_model.model = model
|
28 |
+
vit_model.features = encoder_feature_dims
|
29 |
+
vit_model.vit_features = vit_features
|
30 |
+
vit_model.model.start_index = start_index
|
31 |
+
vit_model.model.patch_size = vit_model.model.patch_embed.patch_size
|
32 |
+
vit_model.model.is_vit = True
|
33 |
+
vit_model.model.forward = vit_model.model.forward_features
|
34 |
+
|
35 |
+
return vit_model
|
36 |
+
|
37 |
+
|
38 |
+
def forward_features_eva_fixed(self, x):
|
39 |
+
"""Encode features."""
|
40 |
+
x = self.patch_embed(x)
|
41 |
+
x, rot_pos_embed = self._pos_embed(x)
|
42 |
+
for blk in self.blocks:
|
43 |
+
if self.grad_checkpointing:
|
44 |
+
x = checkpoint(blk, x, rot_pos_embed)
|
45 |
+
else:
|
46 |
+
x = blk(x, rot_pos_embed)
|
47 |
+
x = self.norm(x)
|
48 |
+
return x
|
49 |
+
|
50 |
+
|
51 |
+
def resize_vit(model: nn.Module, img_size) -> nn.Module:
|
52 |
+
"""Resample the ViT module to the given size."""
|
53 |
+
patch_size = model.patch_embed.patch_size
|
54 |
+
model.patch_embed.img_size = img_size
|
55 |
+
grid_size = tuple([s // p for s, p in zip(img_size, patch_size)])
|
56 |
+
model.patch_embed.grid_size = grid_size
|
57 |
+
|
58 |
+
pos_embed = resample_abs_pos_embed(
|
59 |
+
model.pos_embed,
|
60 |
+
grid_size, # img_size
|
61 |
+
num_prefix_tokens=(
|
62 |
+
0 if getattr(model, "no_embed_class", False) else model.num_prefix_tokens
|
63 |
+
),
|
64 |
+
)
|
65 |
+
model.pos_embed = torch.nn.Parameter(pos_embed)
|
66 |
+
|
67 |
+
return model
|
68 |
+
|
69 |
+
|
70 |
+
def resize_patch_embed(model: nn.Module, new_patch_size=(16, 16)) -> nn.Module:
|
71 |
+
"""Resample the ViT patch size to the given one."""
|
72 |
+
# interpolate patch embedding
|
73 |
+
if hasattr(model, "patch_embed"):
|
74 |
+
old_patch_size = model.patch_embed.patch_size
|
75 |
+
|
76 |
+
if (
|
77 |
+
new_patch_size[0] != old_patch_size[0]
|
78 |
+
or new_patch_size[1] != old_patch_size[1]
|
79 |
+
):
|
80 |
+
patch_embed_proj = model.patch_embed.proj.weight
|
81 |
+
patch_embed_proj_bias = model.patch_embed.proj.bias
|
82 |
+
use_bias = True if patch_embed_proj_bias is not None else False
|
83 |
+
_, _, h, w = patch_embed_proj.shape
|
84 |
+
|
85 |
+
new_patch_embed_proj = torch.nn.functional.interpolate(
|
86 |
+
patch_embed_proj,
|
87 |
+
size=[new_patch_size[0], new_patch_size[1]],
|
88 |
+
mode="bicubic",
|
89 |
+
align_corners=False,
|
90 |
+
)
|
91 |
+
new_patch_embed_proj = (
|
92 |
+
new_patch_embed_proj * (h / new_patch_size[0]) * (w / new_patch_size[1])
|
93 |
+
)
|
94 |
+
|
95 |
+
model.patch_embed.proj = nn.Conv2d(
|
96 |
+
in_channels=model.patch_embed.proj.in_channels,
|
97 |
+
out_channels=model.patch_embed.proj.out_channels,
|
98 |
+
kernel_size=new_patch_size,
|
99 |
+
stride=new_patch_size,
|
100 |
+
bias=use_bias,
|
101 |
+
)
|
102 |
+
|
103 |
+
if use_bias:
|
104 |
+
model.patch_embed.proj.bias = patch_embed_proj_bias
|
105 |
+
|
106 |
+
model.patch_embed.proj.weight = torch.nn.Parameter(new_patch_embed_proj)
|
107 |
+
|
108 |
+
model.patch_size = new_patch_size
|
109 |
+
model.patch_embed.patch_size = new_patch_size
|
110 |
+
model.patch_embed.img_size = (
|
111 |
+
int(
|
112 |
+
model.patch_embed.img_size[0]
|
113 |
+
* new_patch_size[0]
|
114 |
+
/ old_patch_size[0]
|
115 |
+
),
|
116 |
+
int(
|
117 |
+
model.patch_embed.img_size[1]
|
118 |
+
* new_patch_size[1]
|
119 |
+
/ old_patch_size[1]
|
120 |
+
),
|
121 |
+
)
|
122 |
+
|
123 |
+
return model
|
src/depth_pro/network/vit_factory.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
2 |
+
# Factory functions to build and load ViT models.
|
3 |
+
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
import logging
|
8 |
+
import types
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Dict, List, Literal, Optional
|
11 |
+
|
12 |
+
import timm
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
|
16 |
+
from .vit import (
|
17 |
+
forward_features_eva_fixed,
|
18 |
+
make_vit_b16_backbone,
|
19 |
+
resize_patch_embed,
|
20 |
+
resize_vit,
|
21 |
+
)
|
22 |
+
|
23 |
+
LOGGER = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
ViTPreset = Literal[
|
27 |
+
"dinov2l16_384",
|
28 |
+
]
|
29 |
+
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class ViTConfig:
|
33 |
+
"""Configuration for ViT."""
|
34 |
+
|
35 |
+
in_chans: int
|
36 |
+
embed_dim: int
|
37 |
+
|
38 |
+
img_size: int = 384
|
39 |
+
patch_size: int = 16
|
40 |
+
|
41 |
+
# In case we need to rescale the backbone when loading from timm.
|
42 |
+
timm_preset: Optional[str] = None
|
43 |
+
timm_img_size: int = 384
|
44 |
+
timm_patch_size: int = 16
|
45 |
+
|
46 |
+
# The following 2 parameters are only used by DPT. See dpt_factory.py.
|
47 |
+
encoder_feature_layer_ids: List[int] = None
|
48 |
+
"""The layers in the Beit/ViT used to constructs encoder features for DPT."""
|
49 |
+
encoder_feature_dims: List[int] = None
|
50 |
+
"""The dimension of features of encoder layers from Beit/ViT features for DPT."""
|
51 |
+
|
52 |
+
|
53 |
+
VIT_CONFIG_DICT: Dict[ViTPreset, ViTConfig] = {
|
54 |
+
"dinov2l16_384": ViTConfig(
|
55 |
+
in_chans=3,
|
56 |
+
embed_dim=1024,
|
57 |
+
encoder_feature_layer_ids=[5, 11, 17, 23],
|
58 |
+
encoder_feature_dims=[256, 512, 1024, 1024],
|
59 |
+
img_size=384,
|
60 |
+
patch_size=16,
|
61 |
+
timm_preset="vit_large_patch14_dinov2",
|
62 |
+
timm_img_size=518,
|
63 |
+
timm_patch_size=14,
|
64 |
+
),
|
65 |
+
}
|
66 |
+
|
67 |
+
|
68 |
+
def create_vit(
|
69 |
+
preset: ViTPreset,
|
70 |
+
use_pretrained: bool = False,
|
71 |
+
checkpoint_uri: str | None = None,
|
72 |
+
use_grad_checkpointing: bool = False,
|
73 |
+
) -> nn.Module:
|
74 |
+
"""Create and load a VIT backbone module.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
----
|
78 |
+
preset: The VIT preset to load the pre-defined config.
|
79 |
+
use_pretrained: Load pretrained weights if True, default is False.
|
80 |
+
checkpoint_uri: Checkpoint to load the wights from.
|
81 |
+
use_grad_checkpointing: Use grandient checkpointing.
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
-------
|
85 |
+
A Torch ViT backbone module.
|
86 |
+
|
87 |
+
"""
|
88 |
+
config = VIT_CONFIG_DICT[preset]
|
89 |
+
|
90 |
+
img_size = (config.img_size, config.img_size)
|
91 |
+
patch_size = (config.patch_size, config.patch_size)
|
92 |
+
|
93 |
+
if "eva02" in preset:
|
94 |
+
model = timm.create_model(config.timm_preset, pretrained=use_pretrained)
|
95 |
+
model.forward_features = types.MethodType(forward_features_eva_fixed, model)
|
96 |
+
else:
|
97 |
+
model = timm.create_model(
|
98 |
+
config.timm_preset, pretrained=use_pretrained, dynamic_img_size=True
|
99 |
+
)
|
100 |
+
model = make_vit_b16_backbone(
|
101 |
+
model,
|
102 |
+
encoder_feature_dims=config.encoder_feature_dims,
|
103 |
+
encoder_feature_layer_ids=config.encoder_feature_layer_ids,
|
104 |
+
vit_features=config.embed_dim,
|
105 |
+
use_grad_checkpointing=use_grad_checkpointing,
|
106 |
+
)
|
107 |
+
if config.patch_size != config.timm_patch_size:
|
108 |
+
model.model = resize_patch_embed(model.model, new_patch_size=patch_size)
|
109 |
+
if config.img_size != config.timm_img_size:
|
110 |
+
model.model = resize_vit(model.model, img_size=img_size)
|
111 |
+
|
112 |
+
if checkpoint_uri is not None:
|
113 |
+
state_dict = torch.load(checkpoint_uri, map_location="cpu")
|
114 |
+
missing_keys, unexpected_keys = model.load_state_dict(
|
115 |
+
state_dict=state_dict, strict=False
|
116 |
+
)
|
117 |
+
|
118 |
+
if len(unexpected_keys) != 0:
|
119 |
+
raise KeyError(f"Found unexpected keys when loading vit: {unexpected_keys}")
|
120 |
+
if len(missing_keys) != 0:
|
121 |
+
raise KeyError(f"Keys are missing when loading vit: {missing_keys}")
|
122 |
+
|
123 |
+
LOGGER.info(model)
|
124 |
+
return model.model
|
src/depth_pro/utils.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
2 |
+
|
3 |
+
import logging
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Any, Dict, List, Tuple, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pillow_heif
|
9 |
+
from PIL import ExifTags, Image, TiffTags
|
10 |
+
from pillow_heif import register_heif_opener
|
11 |
+
|
12 |
+
register_heif_opener()
|
13 |
+
LOGGER = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
def extract_exif(img_pil: Image) -> Dict[str, Any]:
|
17 |
+
"""Return exif information as a dictionary.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
----
|
21 |
+
img_pil: A Pillow image.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
-------
|
25 |
+
A dictionary with extracted EXIF information.
|
26 |
+
|
27 |
+
"""
|
28 |
+
# Get full exif description from get_ifd(0x8769):
|
29 |
+
# cf https://pillow.readthedocs.io/en/stable/releasenotes/8.2.0.html#image-getexif-exif-and-gps-ifd
|
30 |
+
img_exif = img_pil.getexif().get_ifd(0x8769)
|
31 |
+
exif_dict = {ExifTags.TAGS[k]: v for k, v in img_exif.items() if k in ExifTags.TAGS}
|
32 |
+
|
33 |
+
tiff_tags = img_pil.getexif()
|
34 |
+
tiff_dict = {
|
35 |
+
TiffTags.TAGS_V2[k].name: v
|
36 |
+
for k, v in tiff_tags.items()
|
37 |
+
if k in TiffTags.TAGS_V2
|
38 |
+
}
|
39 |
+
return {**exif_dict, **tiff_dict}
|
40 |
+
|
41 |
+
|
42 |
+
def fpx_from_f35(width: float, height: float, f_mm: float = 50) -> float:
|
43 |
+
"""Convert a focal length given in mm (35mm film equivalent) to pixels."""
|
44 |
+
return f_mm * np.sqrt(width**2.0 + height**2.0) / np.sqrt(36**2 + 24**2)
|
45 |
+
|
46 |
+
|
47 |
+
def load_rgb(
|
48 |
+
path: Union[Path, str], auto_rotate: bool = True, remove_alpha: bool = True
|
49 |
+
) -> Tuple[np.ndarray, List[bytes], float]:
|
50 |
+
"""Load an RGB image.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
----
|
54 |
+
path: The url to the image to load.
|
55 |
+
auto_rotate: Rotate the image based on the EXIF data, default is True.
|
56 |
+
remove_alpha: Remove the alpha channel, default is True.
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
-------
|
60 |
+
img: The image loaded as a numpy array.
|
61 |
+
icc_profile: The color profile of the image.
|
62 |
+
f_px: The optional focal length in pixels, extracting from the exif data.
|
63 |
+
|
64 |
+
"""
|
65 |
+
LOGGER.debug(f"Loading image {path} ...")
|
66 |
+
|
67 |
+
path = Path(path)
|
68 |
+
if path.suffix.lower() in [".heic"]:
|
69 |
+
heif_file = pillow_heif.open_heif(path, convert_hdr_to_8bit=True)
|
70 |
+
img_pil = heif_file.to_pillow()
|
71 |
+
else:
|
72 |
+
img_pil = Image.open(path)
|
73 |
+
|
74 |
+
img_exif = extract_exif(img_pil)
|
75 |
+
icc_profile = img_pil.info.get("icc_profile", None)
|
76 |
+
|
77 |
+
# Rotate the image.
|
78 |
+
if auto_rotate:
|
79 |
+
exif_orientation = img_exif.get("Orientation", 1)
|
80 |
+
if exif_orientation == 3:
|
81 |
+
img_pil = img_pil.transpose(Image.ROTATE_180)
|
82 |
+
elif exif_orientation == 6:
|
83 |
+
img_pil = img_pil.transpose(Image.ROTATE_270)
|
84 |
+
elif exif_orientation == 8:
|
85 |
+
img_pil = img_pil.transpose(Image.ROTATE_90)
|
86 |
+
elif exif_orientation != 1:
|
87 |
+
LOGGER.warning(f"Ignoring image orientation {exif_orientation}.")
|
88 |
+
|
89 |
+
img = np.array(img_pil)
|
90 |
+
# Convert to RGB if single channel.
|
91 |
+
if img.ndim < 3 or img.shape[2] == 1:
|
92 |
+
img = np.dstack((img, img, img))
|
93 |
+
|
94 |
+
if remove_alpha:
|
95 |
+
img = img[:, :, :3]
|
96 |
+
|
97 |
+
LOGGER.debug(f"\tHxW: {img.shape[0]}x{img.shape[1]}")
|
98 |
+
|
99 |
+
# Extract the focal length from exif data.
|
100 |
+
f_35mm = img_exif.get(
|
101 |
+
"FocalLengthIn35mmFilm",
|
102 |
+
img_exif.get(
|
103 |
+
"FocalLenIn35mmFilm", img_exif.get("FocalLengthIn35mmFormat", None)
|
104 |
+
),
|
105 |
+
)
|
106 |
+
if f_35mm is not None and f_35mm > 0:
|
107 |
+
LOGGER.debug(f"\tfocal length @ 35mm film: {f_35mm}mm")
|
108 |
+
f_px = fpx_from_f35(img.shape[1], img.shape[0], f_35mm)
|
109 |
+
else:
|
110 |
+
f_px = None
|
111 |
+
|
112 |
+
return img, icc_profile, f_px
|