import gradio as gr import depth_pro import numpy as np import matplotlib.pyplot as plt from PIL import Image from typing import Union from pathlib import Path import os def predict_depth(image: Image.Image, auto_rotate: bool, remove_alpha: bool, model, transform): # Convert the PIL image to a temporary file path if needed image_path = "temp_image.jpg" image.save(image_path) # Load and preprocess the image from the given path loaded_image, _, f_px = depth_pro.load_rgb(image_path, auto_rotate=auto_rotate, remove_alpha=remove_alpha) loaded_image = transform(loaded_image) # Run inference prediction = model.infer(loaded_image, f_px=f_px) depth = prediction["depth"].detach().cpu().numpy().squeeze() # Depth in [m] inverse_depth = 1 / depth # Visualize inverse depth instead of depth, clipped to [0.1m;250m] range for better visualization. max_invdepth_vizu = min(inverse_depth.max(), 1 / 0.1) min_invdepth_vizu = max(1 / 250, inverse_depth.min()) inverse_depth_normalized = (inverse_depth - min_invdepth_vizu) / ( max_invdepth_vizu - min_invdepth_vizu ) focallength = prediction["focallength_px"].cpu().numpy() # Normalize and colorize depth map cmap = plt.get_cmap("turbo_r") color_depth = (cmap(inverse_depth_normalized)[..., :3] * 255).astype(np.uint8) # Clean up temporary image os.remove(image_path) return Image.fromarray(color_depth), focallength # Return depth map and f_px def main(): # Load model and preprocessing transform model, transform = depth_pro.create_model_and_transforms() model.eval() # Set up Gradio interface iface = gr.Interface( fn=lambda image, auto_rotate, remove_alpha: predict_depth(image, auto_rotate, remove_alpha, model, transform), inputs=[ gr.Image(type="pil", label="Upload Image"), # Use image browser for input gr.Checkbox(label="Auto Rotate", value=True), # Checkbox for auto_rotate gr.Checkbox(label="Remove Alpha", value=True) # Checkbox for remove_alpha ], outputs=[ gr.Image(label="Depth Map"), # Use PIL image output gr.Textbox(label="Focal Length in Pixels", placeholder="Focal length") # Output for f_px ], title="Depth Pro: Sharp Monocular Metric Depth Estimation", # Set the title to "Depth Pro" description="Upload an image and adjust options to estimate its depth map using a depth estimation model.", allow_flagging=False # Disable the flag button ) # Launch the interface iface.launch() if __name__ == "__main__": main()