Spaces:
Running
Running
Use Markdown interspersed with HTML rather than pure HTML
Browse files
README.md
CHANGED
@@ -6,54 +6,28 @@ colorTo: red
|
|
6 |
sdk: static
|
7 |
pinned: false
|
8 |
---
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
library.
|
19 |
-
</p>
|
20 |
-
<div
|
21 |
-
class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
|
22 |
-
>
|
23 |
-
<pre class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
|
24 |
-
pip install -U sentence-transformers
|
25 |
-
</pre>
|
26 |
-
</div>
|
27 |
-
</p>
|
28 |
-
<div class="lg:col-span-3">
|
29 |
-
<p class="mb-4">
|
30 |
-
The usage is as simple as:
|
31 |
-
</p>
|
32 |
-
<div
|
33 |
-
class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
|
34 |
-
>
|
35 |
-
<pre class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
|
36 |
from sentence_transformers import SentenceTransformer
|
37 |
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
38 |
|
39 |
-
#Sentences we want to encode. Example:
|
40 |
sentence = ['This framework generates embeddings for each input sentence']
|
41 |
|
42 |
-
#Sentences are encoded by calling model.encode()
|
43 |
embedding = model.encode(sentence)
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
<div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
|
49 |
-
<div class="lg:col-span-3">
|
50 |
-
<p class="mb-4">
|
51 |
-
Hugging Face makes it easy to collaboratively build and showcase your <a
|
52 |
-
href="https://www.sbert.net/">Sentence Transformers</a
|
53 |
-
>
|
54 |
-
models! You can collaborate with your organization, upload and showcase your own models in your profile ❤️
|
55 |
-
</p>
|
56 |
-
</div>
|
57 |
<a href="https://www.sbert.net/" class="block overflow-hidden group">
|
58 |
<div
|
59 |
class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center bg-[#FA8072]"
|
@@ -63,7 +37,7 @@ embedding = model.encode(sentence)
|
|
63 |
<div class="underline">Documentation</div>
|
64 |
</a>
|
65 |
<a
|
66 |
-
href="https://
|
67 |
class="block overflow-hidden group"
|
68 |
>
|
69 |
<div
|
@@ -92,25 +66,14 @@ embedding = model.encode(sentence)
|
|
92 |
</div>
|
93 |
<div class="underline">Find all Sentence Transformers models on the 🤗 Hub</div>
|
94 |
</a>
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
<pre
|
107 |
-
class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
|
108 |
-
from sentence_transformers import SentenceTransformer
|
109 |
-
# Load or train a model
|
110 |
-
model = ...
|
111 |
-
# Push to Hub
|
112 |
-
model.save_to_hub("my_new_model")
|
113 |
-
</pre>
|
114 |
-
</div>
|
115 |
-
</p>
|
116 |
-
</div>
|
|
|
6 |
sdk: static
|
7 |
pinned: false
|
8 |
---
|
9 |
+
SentenceTransformers 🤗 is a Python framework for state-of-the-art sentence, text and image embeddings.
|
10 |
+
|
11 |
+
Install the [Sentence Transformers](https://www.sbert.net/) library.
|
12 |
+
```
|
13 |
+
pip install -U sentence-transformers
|
14 |
+
```
|
15 |
+
|
16 |
+
The usage is as simple as:
|
17 |
+
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
from sentence_transformers import SentenceTransformer
|
19 |
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
20 |
|
21 |
+
# Sentences we want to encode. Example:
|
22 |
sentence = ['This framework generates embeddings for each input sentence']
|
23 |
|
24 |
+
# Sentences are encoded by calling model.encode()
|
25 |
embedding = model.encode(sentence)
|
26 |
+
```
|
27 |
+
|
28 |
+
Hugging Face makes it easy to collaboratively build and showcase your [Sentence Transformers](https://www.sbert.net/) models! You can collaborate with your organization, upload and showcase your own models in your profile ❤️
|
29 |
+
|
30 |
<div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
<a href="https://www.sbert.net/" class="block overflow-hidden group">
|
32 |
<div
|
33 |
class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center bg-[#FA8072]"
|
|
|
37 |
<div class="underline">Documentation</div>
|
38 |
</a>
|
39 |
<a
|
40 |
+
href="https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.save_to_hub"
|
41 |
class="block overflow-hidden group"
|
42 |
>
|
43 |
<div
|
|
|
66 |
</div>
|
67 |
<div class="underline">Find all Sentence Transformers models on the 🤗 Hub</div>
|
68 |
</a>
|
69 |
+
</div>
|
70 |
+
|
71 |
+
To upload your Sentence Transformers models to the Hugging Face Hub, log in with `huggingface-cli login` and use the [`save_to_hub`](https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.save_to_hub) method within the Sentence Transformers library.
|
72 |
+
```python
|
73 |
+
from sentence_transformers import SentenceTransformer
|
74 |
+
|
75 |
+
# Load or train a model
|
76 |
+
model = SentenceTransformer(...)
|
77 |
+
# Push to Hub
|
78 |
+
model.save_to_hub("my_new_model")
|
79 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|