Spaces:
Sleeping
Sleeping
File size: 13,151 Bytes
ce3dfc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import os
import json
import pandas as pd
import copy
from functools import wraps
from specklepy.api.client import SpeckleClient
from tripGenerationFunc import *
import speckle_utils
import data_utils
# get config file:# Parse JSON
current_directory = os.path.dirname(os.path.abspath(__file__))
# Path to the config.json file
config_file_path = os.path.join(current_directory, "config.json")
#def runAll():
speckle_token = os.environ.get("SPECKLE_TOKEN")
# Check if the config.json file exists
if os.path.exists(config_file_path):
# Load the JSON data from config.json
with open(config_file_path, 'r') as f:
config = json.load(f)
# Convert to Python variables with the same names as the keys in the JSON
locals().update(config)
print("varaibles from json")
# Now you can access the variables directly
print(STREAM_ID)
print(BRANCH_NAME_LAND_USES)
print(TARGET_TRIP_RATE)
print(ALPHA_LOW)
print(F_VALUES_MANUAL)
print(distance_matrices_of_interest)
print(redistributeTrips)
print(DISTANCE_BRACKETS)
print(XLS_FILE_PATH)
print("==================")
else:
print("Error: config.json file not found in the current directory.")
xls_file_path = os.path.join(current_directory, XLS_FILE_PATH)
print("full path", xls_file_path)
# fetch speckle data
CLIENT = SpeckleClient(host="https://speckle.xyz/")
CLIENT.authenticate_with_token(token="52566d1047b881764e16ad238356abeb2fc35d8b42")
# get land use stream
stream_land_use = speckle_utils.getSpeckleStream(STREAM_ID,
BRANCH_NAME_LAND_USES,
CLIENT,
commit_id = "")
# navigate to list with speckle objects of interest
stream_data = stream_land_use["@Data"]["@{0}"]
# transform stream_data to dataframe (create a backup copy of this dataframe)
df_speckle_lu = speckle_utils.get_dataframe(stream_data, return_original_df=False)
df_main = df_speckle_lu.copy()
# set index column
df_main = df_main.set_index("ids", drop=False)
# get distance matrix stream
stream_distance_matrice = speckle_utils.getSpeckleStream(STREAM_ID,
BRANCH_NAME_DISTANCE_MATRIX,
CLIENT,
commit_id = "")
# navigate to list with speckle objects of interest
distance_matrices = {}
for distM in stream_distance_matrice["@Data"]['@{0}']:
for kk in distM.__dict__.keys():
try:
if kk.split("+")[1].startswith("distance_matrix"):
distance_matrix_dict = json.loads(distM[kk])
origin_ids = distance_matrix_dict["origin_uuid"]
destination_ids = distance_matrix_dict["destination_uuid"]
distance_matrix = distance_matrix_dict["matrix"]
# Convert the distance matrix to a DataFrame
df_distances = pd.DataFrame(distance_matrix, index=origin_ids, columns=destination_ids)
# i want to add the index & colum names to dist_m_csv
#distance_matrices[kk] = dist_m_csv[kk]
distance_matrices[kk] = df_distances
except:
pass
# get metric matrix stream
stream_metric_matrice = speckle_utils.getSpeckleStream(STREAM_ID,
BRANCH_NAME_METRIC_DIST_MATRIX,
CLIENT,
commit_id = "")
# navigate to list with speckle objects of interest
metric_matrices = {}
for distM in stream_metric_matrice["@Data"]['@{0}']:
print(distM.__dict__.keys())
for kk in distM.__dict__.keys():
try:
if kk.split("+")[1].startswith("metric_matrix"):
metric_matrix_dict = json.loads(distM[kk])
origin_ids = metric_matrix_dict["origin_uuid"]
destination_ids = metric_matrix_dict["destination_uuid"]
metric_matrix = metric_matrix_dict["matrix"]
# Convert the distance matrix to a DataFrame
df_metric_dist = pd.DataFrame(metric_matrix, index=origin_ids, columns=destination_ids)
metric_matrices[kk] = df_metric_dist*10 #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
print("metric_matrix_dict", metric_matrix_dict.keys())
except:
pass
metric_matrices = extract_distance_matrices(stream_metric_matrice, metric_matrices_of_interest)
sourceCommits = {
"landuseCommitID": stream_land_use.id,
"distanceMatrixCommitID": stream_distance_matrice.id,
"metricMatrixCommitID": stream_metric_matrice.id
}
# READ XLS FILE ======================================
# Read Excel file into Pandas DataFrame
#Production
# Load Excel file separately
#xls_file_path = os.path.join(current_directory, XLS_FILE_PATH)
if os.path.exists(xls_file_path):
# Production
df_production = pd.read_excel(xls_file_path, sheet_name='Production')
df_production_transposed = df_production.T
df_production = preprocess_dataFrame(df_production, headerRow_idx=2, numRowsStart_idx=3)
df_production_transposed = preprocess_dataFrame(df_production_transposed, headerRow_idx=0, numRowsStart_idx=4,
numColsStart_idx=4, rowNames_idx=2)
# Attraction
df_attraction = pd.read_excel(xls_file_path, sheet_name='Attraction')
df_attraction = preprocess_dataFrame(df_attraction, headerRow_idx=0, numRowsStart_idx=2)
# Distribution_Matrix
df_distributionMatrix = pd.read_excel(xls_file_path, sheet_name='Distribution_Matrix')
df_distributionMatrix = preprocess_dataFrame(df_distributionMatrix, headerRow_idx=0, numRowsStart_idx=2,
numRowsEnd_idx=None, numColsStart_idx=2, numColsEnd_idx=None,
rowNames_idx=0)
# Alphas
df_alphas = pd.read_excel(xls_file_path, sheet_name='Alphas')
df_alphas.columns = df_alphas.iloc[1]
df_alphas = df_alphas.iloc[0, 2:]
# Land use
df_lu = pd.read_excel(xls_file_path, sheet_name='Example_Land_Use')
df_lu = preprocess_dataFrame(df_lu, headerRow_idx=0, numRowsStart_idx=1)
df_lu["nameCombined"] = df_lu.iloc[:, 1].astype(str) + "+" + df_lu.iloc[:, 0].astype(str)
# Distance Matrix
df_distMatrix = pd.read_excel(xls_file_path, sheet_name='Example_Distance_Matrix')
df_distMatrix = preprocess_dataFrame(df_distMatrix, headerRow_idx=0, numRowsStart_idx=1, numRowsEnd_idx=None,
numColsStart_idx=1, numColsEnd_idx=None, rowNames_idx=0)
else:
print("Error: Excel file specified in config.json not found.")
# Land use strucutre =======
# THIS IS THE DISTANCE MATRIX THATS USED DOWN THE ROAD
df_distances_aligned, df_lu_stream_aligned = align_dataframes(distance_matrices[distanceMatrixName], df_main, 'ids')
#Create a df with lanuses
lu_cols = [col for col in df_lu_stream_aligned.columns if col.startswith("lu+")]
df_lu_stream = df_lu_stream_aligned[lu_cols]
# Remove "lu+" from the beginning of column names
df_lu_stream.columns = df_lu_stream.columns.str.lstrip('lu+')
df_lu_stream = df_lu_stream.T
df_lu_stream_t = df_lu_stream.T
df_lu_stream_with_nameLu_column = df_lu_stream.reset_index(drop=False).rename(columns={'index': 'nameLu'})
#---
df_lu_names_xlsx = pd.concat([df_lu.iloc[:, 0:2], df_lu.iloc[:, -1]], axis=1)
df_lu_names_xlsx.index = df_lu_names_xlsx.iloc[:, 1]
column_names = ['nameTripType', 'nameLu', 'nameCombined']
df_lu_names_xlsx.columns = column_names
print(f"df_lu_names_xlsx shape: {df_lu_names_xlsx.shape}")
df_lu_names_xlsx.head()
#--
# Merge DataFrames using an outer join
merged_df = pd.merge(df_lu_stream_with_nameLu_column, df_lu_names_xlsx, on='nameLu', how='outer')
# Get the unique names and their counts from df_lu_names_xlsx
name_counts = df_lu_names_xlsx['nameLu'].value_counts()
#print(name_counts)
# Identify names in df_lu_stream_with_nameLu_column that are not in df_lu_names_xlsx
missing_names = df_lu_stream_with_nameLu_column.loc[~df_lu_stream_with_nameLu_column['nameLu'].isin(df_lu_names_xlsx['nameLu'])]
# Append missing rows to df_lu_stream_with_nameLu_column
df_lu_stream_duplicated = pd.concat([merged_df, missing_names], ignore_index=True)
#--
# Find names in df_lu_names_xlsx that are not in df_lu_stream_with_nameLu_column
missing_names = df_lu_names_xlsx.loc[~df_lu_names_xlsx['nameLu'].isin(df_lu_stream_with_nameLu_column['nameLu'])]
#--
# print existing names (?)
df_lu_names_sorted = df_lu_names_xlsx.sort_values(by='nameLu')
df_lu_stream_duplicated_sorted = df_lu_stream_duplicated.sort_values(by='nameLu')
#--
# Merge DataFrames to get the order of names
merged_order = pd.merge(df_lu_names_xlsx[['nameCombined']], df_lu_stream_duplicated[['nameCombined']], on='nameCombined', how='inner')
# Sort df_lu_stream_duplicated based on the order of names in df_lu_names_xlsx
df_lu_stream_sorted = df_lu_stream_duplicated.sort_values(by='nameCombined', key=lambda x: pd.Categorical(x, categories=merged_order['nameCombined'], ordered=True))
# Reorganize columns
column_order = ['nameTripType', 'nameCombined'] + [col for col in df_lu_stream_sorted.columns if col not in ['nameTripType', 'nameCombined']]
# Create a new DataFrame with the desired column order
df_lu_stream_reordered = df_lu_stream_sorted[column_order]
df_lu_stream_reordered_t = df_lu_stream_reordered.T
#--
df_lu_stream_with_index = df_lu_stream_reordered_t.reset_index(drop=False).rename(columns={'index': 'ids'})
df_lu_stream_with_index.index = df_lu_stream_reordered_t.index
df_lu_num_t_index = df_lu_stream_with_index.iloc[3:]
df_distances_aligned_index = df_distances_aligned.reset_index(drop=False).rename(columns={'index': 'ids'})
df_distances_aligned_index.index = df_distances_aligned.index
df_lu_namesCombined = df_lu_stream_with_index.loc["nameCombined"].iloc[1:]
# Sort df_lu_stream_with_index based on the 'ids' column in df_distances_aligned_index
df_lu_stream_sorted = df_lu_stream_with_index.sort_values(by=['ids'], key=lambda x: pd.Categorical(x, categories=df_distances_aligned_index['ids'], ordered=True))
df_lu_num = df_lu_stream_sorted.T.iloc[1:, :-3]
df_lu_num.index = df_lu_namesCombined
df_distMatrix_speckle = df_distances_aligned
df_attraction_num = df_attraction.reset_index().iloc[:-1, 6:]
# =============================================================================
# TRIP GENERATION
# ATTRACTION & PRODUCTION ======================================================
"""
INPUTS
df_attraction_num
df_lu_num
df_production
df_lu
df_production_transposed
"""
df_attraction_proNode_sum_total = attraction_proNode_full_iter(df_attraction_num, df_lu_num, True)
#Get the sqmProPerson
df_sqmProPerson = df_production.iloc[0, 4:].reset_index()[3]
#Get the trip rate
df_tripRate = copy.deepcopy(df_production) # create a copy ensures df_tripRate doenst point to df_production
df_tripRate.index = df_tripRate.iloc[:, 0] #Set the row names
df_tripRate = df_tripRate.iloc[1:, 2]
#Numerical df from production ==============================================
df_production_num = df_production.iloc[1:, 4:]
df_production_transposed1 = df_production_num.T
df_total_trips_allNodes = production_proNode_total(df_lu,
df_sqmProPerson,
df_tripRate,
df_production_num,
df_production_transposed,
df_lu_num, printSteps=False)
# Convert data types to float
df_total_trips_allNodes = df_total_trips_allNodes.astype(float)
df_tripRate = df_tripRate.astype(float)
df_total_trips_allNodes_sumPerson = df_total_trips_allNodes.div(df_tripRate, axis=0).sum()
df_total_trips_allNodes_sumPerson_proCat = df_total_trips_allNodes.div(df_tripRate, axis=0)
df_total_trips_allNodes_sumPerson_proCat_t = df_total_trips_allNodes_sumPerson_proCat.T
df_total_trips_allNodes_sumPerson_proCat_t_sum = df_total_trips_allNodes_sumPerson_proCat_t.sum()
# get total population
total_population = df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_Res"] + df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_tou"]
# =============================================================================
distance_matrices = extract_distance_matrices(stream_distance_matrice, distance_matrices_of_interest)
metric_matrices_ = extract_distance_matrices(stream_metric_matrice, metric_matrices_of_interest)
metric_matrices = { k:v*10 for k, v in metric_matrices_.items()} # scale (speckle issue)
logs = computeTrips(
df_distributionMatrix,
df_total_trips_allNodes,
df_distMatrix_speckle,
df_alphas,
df_attraction_proNode_sum_total,
df_distances_aligned,
TARGET_TRIP_RATE,
SCALING_FACTOR,
total_population,
df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_Res"],
df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_tou"],
distance_matrices,
metric_matrices,
redistributeTrips,
DISTANCE_BRACKETS,
ALPHA_LOW, ALPHA_MED, ALPHA_HIGH, ALPHA, ALPHA_UNIFORM, F_VALUES_MANUAL,
CLIENT,
STREAM_ID,
TARGET_BRANCH_TM,
sourceCommits
)
print(logs) |