File size: 26,766 Bytes
debd61e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

import pandas as pd
import numpy as np
import copy
import os 
import csv
import io
import json
import requests

try:
    from fuzzywuzzy import fuzz
except:
    pass

def helper():
    """
    Prints out the help message for this module.
    """
    print("This module contains a set of utility functions for data processing.")
    print("______________________________________________________________________")
    print("for detailed help call >>> help(speckle_utils.function_name) <<< ")
    print("______________________________________________________________________")
    print("available functions:")
    print("cleanData(data, mode='drop', num_only=False) -> clean dataframes, series or numpy arrays" )
    print( """ sort_and_match_df(A, B, uuid_column) -> merges two dataframes by a common uuid comon (best practice: always use this)""")
    print("transform_to_score(data, minPts, maxPts, t_low, t_high, cull_invalid=False) -> transform data to a score based on percentiles and provided points") 
    print("colab_create_directory(base_name) -> create a directory with the given name, if it already exists, add a number to the end of the name, usefull for colab")
    print("colab_zip_download_folder(dir_name) -> zips and downloads a directory from colab. will only work in google colaboratory ")


def cleanData(data, mode="drop", num_only=False, print_report=True):
    """
    Cleans data by handling missing or null values according to the specified mode.

    Args:
        data (numpy.ndarray, pandas.DataFrame, pandas.Series): Input data to be cleaned.
        mode (str, optional): Specifies the method to handle missing or null values.
                              "drop" drops rows with missing values (default),
                              "replace_zero" replaces missing values with zero,
                              "replace_mean" replaces missing values with the mean of the column.
        num_only (bool, optional): If True and data is a DataFrame, only numeric columns are kept. Defaults to False.#
        print_report (bool, optional): if True the report is printed to the console. Defaults to True.

    Returns:
        numpy.ndarray, pandas.DataFrame, pandas.Series: Cleaned data with the same type as the input.


    Raises:
        ValueError: If the input data type is not supported (must be numpy.ndarray, pandas.DataFrame or pandas.Series).

    This function checks the type of the input data and applies the appropriate cleaning operation accordingly.
    It supports pandas DataFrame, pandas Series, and numpy array. For pandas DataFrame, it can optionally 
    convert and keep only numeric columns.
    """
    report = {}
    if isinstance(data, pd.DataFrame):
        initial_cols = data.columns.tolist()
        initial_rows = data.shape[0]
        if num_only:
            # attempt casting before doing this selection
            data = data.apply(pd.to_numeric, errors='coerce')
            data = data.select_dtypes(include=['int64', 'float64'])
            report['dropped_cols'] = list(set(initial_cols) - set(data.columns.tolist()))

        if mode == "drop":
            data = data.dropna()
            report['dropped_rows'] = initial_rows - data.shape[0]
        elif mode=="replace_zero":
            data = data.fillna(0)
        elif mode=="replace_mean":
            data = data.fillna(data.mean())

    elif isinstance(data, pd.Series):
        initial_length = len(data)
        if mode == "drop":
            data = data.dropna()
            report['dropped_rows'] = initial_length - len(data)
        elif mode=="replace_zero":
            data = data.fillna(0)
        elif mode=="replace_mean":
            data = data.fillna(data.mean())

    elif isinstance(data, np.ndarray):
        initial_length = data.size
        if mode=="drop":
            data = data[~np.isnan(data)]
            report['dropped_rows'] = initial_length - data.size
        elif mode=="replace_zero":
            data = np.nan_to_num(data, nan=0)
        elif mode=="replace_mean":
            data = np.where(np.isnan(data), np.nanmean(data), data)

    else:
        raise ValueError("Unsupported data type")
    if print_report:
        print(report)   
    return data



def sort_and_match_df(A, B, uuid_column):
    """
    Sorts and matches DataFrame B to A based on a shared uuid_column.
    Prioritizes uuid_column as an index if present, otherwise uses it as a column.
    
    Parameters:
    A, B (DataFrame): Input DataFrames to be sorted and matched.
    uuid_column (str): Shared column/index for matching rows.
    
    Returns:
    DataFrame: Resulting DataFrame after left join of A and B on uuid_column.
    """
    if uuid_column in A.columns:
        A = A.set_index(uuid_column, drop=False)
    if uuid_column in B.columns:
        B = B.set_index(uuid_column, drop=False)

    merged_df = pd.merge(A, B, left_index=True, right_index=True, how='left')
    return merged_df.reset_index(drop=False)


def sort_and_match_dfs(dfs, uuid_column):
    """
    Sorts and matches all DataFrames in list based on a shared uuid_column.
    Prioritizes uuid_column as an index if present, otherwise uses it as a column.
    Raises a warning if any two DataFrames have overlapping column names.
    
    Parameters:
    dfs (list): A list of DataFrames to be sorted and matched.
    uuid_column (str): Shared column/index for matching rows.
    
    Returns:
    DataFrame: Resulting DataFrame after successive left joins on uuid_column.
    """
    if not dfs:
        raise ValueError("The input list of DataFrames is empty")
    
    # Convert uuid_column to index if it's a column
    for i, df in enumerate(dfs):
        if uuid_column in df.columns:
            dfs[i] = df.set_index(uuid_column, drop=False)

    # Check for overlapping column names
    all_columns = [set(df.columns) for df in dfs]
    for i, columns_i in enumerate(all_columns):
        for j, columns_j in enumerate(all_columns[i+1:], start=i+1):
            overlapping_columns = columns_i.intersection(columns_j) - {uuid_column}
            if overlapping_columns:
                print(f"Warning: DataFrames at indices {i} and {j} have overlapping column(s): {', '.join(overlapping_columns)}")
    
    result_df = dfs[0]
    for df in dfs[1:]:
        result_df = pd.merge(result_df, df, left_index=True, right_index=True, how='left')

    return result_df.reset_index(drop=False)




def transform_to_score(data, minPts, maxPts, t_low, t_high, cull_invalid=False):
    """
        Transforms data to a score based on percentiles and provided points.

        Args:
            data (numpy.array or pandas.Series): Input data to be transformed.
            minPts (float): The minimum points to be assigned.
            maxPts (float): The maximum points to be assigned.
            t_low (float): The lower percentile threshold.
            t_high (float): The upper percentile threshold.
            cull_invalid (bool, optional): If True, invalid data is removed. Defaults to False.

        Returns:
            numpy.array: The transformed data, where each element has been converted to a score based on its percentile rank.

        This function calculates the t_low and t_high percentiles of the input data, and uses linear interpolation
        to transform each data point to a score between minPts and maxPts. Any data point that falls above the t_high
        percentile is given a score of maxPts. If cull_invalid is True, any invalid data points (such as NaNs or 
        infinite values) are removed before the transformation is applied.
    """

    # If cull_invalid is True, the data is cleaned and invalid data is removed.
    if cull_invalid:
        inp_data = cleanData(inp_data, mode="drop", num_only=True)
    
    # Calculate the percentile values based on the data
    percentile_low = np.percentile(data, t_low)
    percentile_high = np.percentile(data, t_high)

    # Create a copy of the data to store the transformed points
    transformed_data = data.copy()

    # Apply linear interpolation between minPts and maxPts
    transformed_data = np.interp(transformed_data, [percentile_low, percentile_high], [minPts, maxPts])

    # Replace values above the percentile threshold with maxPts
    transformed_data[transformed_data >= percentile_high] = maxPts

    return transformed_data


def colab_create_directory(base_name):
    """ creates a directory with the given name, if it already exists, add a number to the end of the name.
    Usefull for colab to batch save e.g. images and avoid overwriting.
    Args:
        base_name (str): name of the directory to create
    Returns:
        str: name of the created directory"""
    counter = 1
    dir_name = base_name

    while os.path.exists(dir_name):
        dir_name = f"{base_name}_{counter}"
        counter += 1

    os.mkdir(dir_name)
    return dir_name

def smart_round(x):
    if abs(x) >= 1000:
        return round(x)
    elif abs(x) >= 10:
        return round(x, 1)
    elif abs(x) >= 1:
        return round(x, 2)
    else:
        return round(x, 3)

def colab_zip_download_folder(dir_name):
    """ zips and downloads a directory from colab. will only work in google colab
    Args: 
        dir_name (str): name of the directory to zip and download
    returns: 
        None, file will be downloaded to the local machine"""
    try:
        # zip the directory
        get_ipython().system('zip -r /content/{dir_name}.zip /content/{dir_name}')

        # download the zip file
        from google.colab import files
        files.download(f"/content/{dir_name}.zip")
    except:
        print("something went wrong, this function will only work in google colab, make sure to import the necessary packages. >>> from google.colab import files <<<" ) 




def generate__cluster_prompt(data_context, analysis_goal, column_descriptions, cluster_stat, complexity, exemplary_cluster_names_descriptions=None, creativity=None):
    # Define complexity levels
    complexity_levels = {
        1: "Please explain the findings in a simple way, suitable for someone with no knowledge of statistics or data science.",
        2: "Please explain the findings in moderate detail, suitable for someone with basic understanding of statistics or data science.",
        3: "Please explain the findings in great detail, suitable for someone with advanced understanding of statistics or data science."
    }

    # Start the prompt
    prompt = f"The data you are analyzing is from the following context: {data_context}. The goal of this analysis is: {analysis_goal}.\n\n"

    # Add column descriptions
    prompt += "The data consists of the following columns:\n"
    for column, description in column_descriptions.items():
        prompt += f"- {column}: {description}\n"

    # Add cluster stat and ask for generation
    prompt += "\nBased on the data, the following cluster has been identified:\n"
    prompt += f"\nCluster ID: {cluster_stat['cluster_id']}\n"
    for column, stats in cluster_stat['columns'].items():
        prompt += f"- {column}:\n"
        for stat, value in stats.items():
            prompt += f"  - {stat}: {value}\n"
    
    # Adjust the prompt based on whether examples are provided
    if exemplary_cluster_names_descriptions is not None and creativity is not None:
        prompt += f"\nPlease generate a name and description for this cluster, using a creativity level of {creativity} (where 0 is sticking closely to the examples and 1 is completely original). The examples provided are: {exemplary_cluster_names_descriptions}\n"
    else:
        prompt += "\nPlease generate a name and description for this cluster. Be creative and original in your descriptions.\n"

    prompt += "Please fill the following JSON template with the cluster name and two types of descriptions:\n"
    prompt += "{\n  \"cluster_name\": \"<generate>\",\n  \"description_narrative\": \"<generate>\",\n  \"description_statistical\": \"<generate>\"\n}\n"
    prompt += f"\nFor the narrative description, {complexity_levels[complexity]}"

    return prompt


def generate_cluster_description(cluster_df, original_df=None, stats_list=['mean', 'min', 'max', 'std', 'kurt'], cluster_id = ""):
    cluster_description = {"cluster_id": cluster_id,
                            "name":"<generate>",
                              "description_narrative":"<generate>",
                              "description_statistical":"<generate>",
                              "size": len(cluster_df),
                                "columns": {}
                                }
    if original_df is not None:
        size_relative = round(len(cluster_df)/len(original_df), 2)
    for column in cluster_df.columns:
        cluster_description["columns"][column] = {}
        for stat in stats_list:
            # Compute the statistic for the cluster
            if stat == 'mean':
                value = round(cluster_df[column].mean(),2)
            elif stat == 'min':
                value = round(cluster_df[column].min(),2)
            elif stat == 'max':
                value = round(cluster_df[column].max(),2)
            elif stat == 'std':
                value = round(cluster_df[column].std(), 2)
            elif stat == 'kurt':
                value = round(cluster_df[column].kurt(), 2)

            # Compute the relative difference if the original dataframe is provided
            if original_df is not None:
                original_value = original_df[column].mean() if stat == 'mean' else original_df[column].min() if stat == 'min' else original_df[column].max() if stat == 'max' else original_df[column].std() if stat == 'std' else original_df[column].kurt()
                relative_difference = (value - original_value) / original_value * 100
                cluster_description["columns"][column][stat] = {"value": round(value,2), "relative_difference": f"{round(relative_difference,2)}%"}
            else:
                cluster_description["columns"][column][stat] = {"value": round(value,2)}

    return cluster_description




def generate_cluster_description_mixed(cluster_df, original_df=None, stats_list=['mean', 'min', 'max', 'std', 'kurt'], cluster_id = ""):
    cluster_description = {
        "cluster_id": cluster_id,
        "name":"<generate>",
        "description_narrative":"<generate>",
        "description_statistical":"<generate>",
        "size": len(cluster_df),
        "columns": {}
    }

    if original_df is not None:
        size_relative = round(len(cluster_df)/len(original_df), 2)

    # Create CSV string in memory
    csv_io = io.StringIO()
    writer = csv.writer(csv_io)

    # CSV Headers
    writer.writerow(['Column', 'Stat', 'Value', 'Relative_Difference'])

    for column in cluster_df.columns:
        for stat in stats_list:
            if stat == 'mean':
                value = round(cluster_df[column].mean(),2)
            elif stat == 'min':
                value = round(cluster_df[column].min(),2)
            elif stat == 'max':
                value = round(cluster_df[column].max(),2)
            elif stat == 'std':
                value = round(cluster_df[column].std(), 2)
            elif stat == 'kurt':
                value = round(cluster_df[column].kurt(), 2)

            if original_df is not None:
                original_value = original_df[column].mean() if stat == 'mean' else original_df[column].min() if stat == 'min' else original_df[column].max() if stat == 'max' else original_df[column].std() if stat == 'std' else original_df[column].kurt()
                relative_difference = (value - original_value) / original_value * 100
                writer.writerow([column, stat, value, f"{round(relative_difference,2)}%"])
            else:
                writer.writerow([column, stat, value, "N/A"])

    # Store CSV data in JSON
    cluster_description["columns"] = csv_io.getvalue()

    data_description = """
        The input data is a JSON object with details about clusters. It has the following structure:

        1. 'cluster_id': An identifier for the cluster.
        2. 'name': A placeholder for the name of the cluster.
        3. 'description_narrative': A placeholder for a narrative description of the cluster.
        4. 'description_statistical': A placeholder for a statistical description of the cluster.
        5. 'size': The number of elements in the cluster.
        6. 'columns': This contains statistical data about different aspects, presented in CSV format. 

        In the 'columns' CSV:
        - 'Column' corresponds to the aspect.
        - 'Stat' corresponds to the computed statistic for that aspect in the cluster.
        - 'Value' is the value of that statistic.
        - 'Relative_Difference' is the difference of the statistic's value compared to the average value of this statistic in the entire dataset, expressed in percentages.
        """

    return cluster_description, data_description

# ==================================================================================================
# ========== TESTING ===============================================================================

def compare_column_names(ref_list, check_list):
    """
    Compares two lists of column names to check for inconsistencies.

    Args:
        ref_list (list): The reference list of column names.
        check_list (list): The list of column names to be checked.

    Returns:
        report_dict (dict): Report about the comparison process.

    Raises:
        ValueError: If the input types are not list.
    """
    # Check the type of input data
    if not all(isinstance(i, list) for i in [ref_list, check_list]):
        raise ValueError("Both inputs must be of type list")

    missing_cols = [col for col in ref_list if col not in check_list]
    extra_cols = [col for col in check_list if col not in ref_list]
    
    try:
      typos = {}
      for col in check_list:
          if col not in ref_list:
              similarity_scores = {ref_col: fuzz.ratio(col, ref_col) for ref_col in ref_list}
              likely_match = max(similarity_scores, key=similarity_scores.get)
              if similarity_scores[likely_match] > 70:  # you may adjust this threshold as needed
                  typos[col] = likely_match
    except:
      typos = {"error":"fuzzywuzzy is probably not installed"}

    report_dict = {
        "missing_columns": missing_cols,
        "extra_columns": extra_cols,
        "likely_typos": typos
    }

    print("\nREPORT:")
    print('-'*50)
    print("\n- Missing columns:")
    print('   ' + '\n   '.join(f'"{col}"' for col in missing_cols) if missing_cols else '   None')
    print("\n- Extra columns:")
    print('   ' + '\n   '.join(f'"{col}"' for col in extra_cols) if extra_cols else '   None')
    print("\n- Likely typos:")
    if typos:
        for k, v in typos.items():
            print(f'   "{k}": "{v}"')
    else:
        print('   None')

    return report_dict


def compare_dataframes(df1, df2, threshold=0.1):
    """
    Compare two pandas DataFrame and returns a report highlighting any significant differences.
    Significant differences are defined as differences that exceed the specified threshold.

    Args:
        df1, df2 (pandas.DataFrame): Input dataframes to be compared.
        threshold (float): The percentage difference to be considered significant. Defaults to 0.1 (10%).

    Returns:
        pandas.DataFrame: A report highlighting the differences between df1 and df2.
    """
    # Column comparison
    cols_df1 = set(df1.columns)
    cols_df2 = set(df2.columns)
    
    common_cols = cols_df1 & cols_df2
    missing_df1 = cols_df2 - cols_df1
    missing_df2 = cols_df1 - cols_df2

    print("Column Comparison:")
    print("------------------")
    print(f"Common columns ({len(common_cols)}): {sorted(list(common_cols)) if common_cols else 'None'}")
    print(f"Columns missing in df1 ({len(missing_df1)}): {sorted(list(missing_df1)) if missing_df1 else 'None'}")
    print(f"Columns missing in df2 ({len(missing_df2)}): {sorted(list(missing_df2)) if missing_df2 else 'None'}")
    print("\n")

    # Check for new null values
    print("Null Values Check:")
    print("------------------")
    inconsistent_values_cols = []
    inconsistent_ranges_cols = []
    constant_cols = []
    
    for col in common_cols:
        nulls1 = df1[col].isnull().sum()
        nulls2 = df2[col].isnull().sum()
        if nulls1 == 0 and nulls2 > 0:
            print(f"New null values detected in '{col}' of df2.")

        # Check for value consistency
        if df1[col].nunique() <= 10 and df2[col].nunique() <= 10:
            inconsistent_values_cols.append(col)

        
          # Check for range consistency
        if df1[col].dtype.kind in 'if' and df2[col].dtype.kind in 'if':
          range1 = df1[col].max() - df1[col].min()
          range2 = df2[col].max() - df2[col].min()
          diff = abs(range1 - range2)
          mean_range = (range1 + range2) / 2
          if diff / mean_range * 100 > threshold * 100:
              inconsistent_ranges_cols.append(col)

        # Check for constant columns
        if len(df1[col].unique()) == 1 or len(df2[col].unique()) == 1:
            constant_cols.append(col)

    # Print out the results of value consistency, range consistency, and constant columns check
    print("\nValue Consistency Check:")
    print("------------------------")
    print(f"Columns with inconsistent values (checks if the unique values are the same in both dataframes): {inconsistent_values_cols if inconsistent_values_cols else 'None'}")
    
    print("\nRange Consistency Check (checks if the range (max - min) of the values in both dataframes is consistent):")
    print("------------------------")
    print(f"Columns with inconsistent ranges: {inconsistent_ranges_cols if inconsistent_ranges_cols else 'None'}")
    
    print("\nConstant Columns Check (columns that have constant values in either dataframe):")
    print("-----------------------")
    print(f"Constant columns: {constant_cols if constant_cols else 'None'}")

    # Check for changes in data type
    print("\nData Type Check:")
    print("----------------")
    for col in common_cols:
        dtype1 = df1[col].dtype
        dtype2 = df2[col].dtype
        if dtype1 != dtype2:
            print(f"df1 '{dtype1}' -> '{dtype2}' in df2, Data type for '{col}' has changed.")
    print("\n")
    
  

    report_dict = {"column": [], "statistic": [], "df1": [], "df2": [], "diff%": []}
    statistics = ["mean", "std", "min", "25%", "75%", "max", "nulls", "outliers"]

    for col in common_cols:
        if df1[col].dtype in ['int64', 'float64'] and df2[col].dtype in ['int64', 'float64']:
            desc1 = df1[col].describe()
            desc2 = df2[col].describe()
            for stat in statistics[:-2]:
                report_dict["column"].append(col)
                report_dict["statistic"].append(stat)
                report_dict["df1"].append(desc1[stat])
                report_dict["df2"].append(desc2[stat])
                diff = abs(desc1[stat] - desc2[stat])
                mean = (desc1[stat] + desc2[stat]) / 2
                report_dict["diff%"].append(diff / mean * 100 if mean != 0 else 0)  # Fix for division by zero
            nulls1 = df1[col].isnull().sum()
            nulls2 = df2[col].isnull().sum()
            outliers1 = df1[(df1[col] < desc1["25%"] - 1.5 * (desc1["75%"] - desc1["25%"])) | 
                            (df1[col] > desc1["75%"] + 1.5 * (desc1["75%"] - desc1["25%"]))][col].count()
            outliers2 = df2[(df2[col] < desc2["25%"] - 1.5 * (desc2["75%"] - desc2["25%"])) | 
                            (df2[col] > desc2["75%"] + 1.5 * (desc2["75%"] - desc2["25%"]))][col].count()
            for stat, value1, value2 in zip(statistics[-2:], [nulls1, outliers1], [nulls2, outliers2]):
                report_dict["column"].append(col)
                report_dict["statistic"].append(stat)
                report_dict["df1"].append(value1)
                report_dict["df2"].append(value2)
                diff = abs(value1 - value2)
                mean = (value1 + value2) / 2
                report_dict["diff%"].append(diff / mean * 100 if mean != 0 else 0)  # Fix for division by zero

    report_df = pd.DataFrame(report_dict)
    report_df["significant"] = report_df["diff%"] > threshold * 100
    report_df = report_df[report_df["significant"]]
    report_df = report_df.round(2)

    print(f"REPORT:\n{'-'*50}")
    for col in report_df["column"].unique():
        print(f"\n{'='*50}")
        print(f"Column: {col}\n{'='*50}")
        subset = report_df[report_df["column"]==col][["statistic", "df1", "df2", "diff%"]]
        subset.index = subset["statistic"]
        print(subset.to_string(header=True))

    return report_df


def notion_db_as_df(database_id, token):
    base_url = "https://api.notion.com/v1"

    # Headers for API requests
    headers = {
        "Authorization": f"Bearer {token}",
        "Notion-Version": "2022-06-28",
        "Content-Type": "application/json"
    }

    response = requests.post(f"{base_url}/databases/{database_id}/query", headers=headers)
    # response.raise_for_status()  # Uncomment to raise an exception for HTTP errors
    pages = response.json().get('results', [])
    print(response.json().keys())

    # Used to create df
    table_data = {}
    page_cnt = len(pages)
    for i, page in enumerate(pages):
        for cur_col, val in page["properties"].items():
            if cur_col not in table_data:
                table_data[cur_col] = [None] * page_cnt
            val_type = val["type"]
            if val_type == "title":
                value = val[val_type][0]["text"]["content"]
            elif val_type in ["number", "checkbox"]:
                value = val[val_type]
            elif val_type in ["select", "multi_select"]:
                value = ', '.join([option["name"] for option in val[val_type]])
            elif val_type == "date":
                value = val[val_type]["start"]
            elif val_type in ["people", "files"]:
                value = ', '.join([item["id"] for item in val[val_type]])
            elif val_type in ["url", "email", "phone_number"]:
                value = val[val_type]
            elif val_type == "formula":
                value = val[val_type]["string"] if "string" in val[val_type] else val[val_type]["number"]
            elif val_type == "rich_text":
              value = val[val_type][0]["text"]["content"]
            else:
                value = str(val[val_type])  # Fallback to string representation
            table_data[cur_col][i] = value

    # To DataFrame
    df = pd.DataFrame(table_data)
    return df