Spaces:
Sleeping
Sleeping
File size: 31,973 Bytes
debd61e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 |
import json
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import math
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.colors as colors
from matplotlib.colors import ListedColormap, LinearSegmentedColormap, Normalize
from matplotlib.cm import ScalarMappable
import pandas as pd
import numpy as np
from pandas.api.types import is_numeric_dtype
from mpl_toolkits.axes_grid1 import make_axes_locatable
from sklearn.metrics import r2_score
def cleanData(data, mode="drop", num_only=False):
"""
This function cleans the input data based on the specified mode.
Parameters:
data (pd.DataFrame, pd.Series, or np.ndarray): The input data to be cleaned.
mode (str, optional): The cleaning method, one of "drop", "replace_zero", or "replace_mean".
"drop" removes NaN values,
"replace_zero" replaces NaN values with zeros,
"replace_mean" replaces NaN values with the mean of the data.
Defaults to "drop".
num_only (bool, optional): If True and data is a DataFrame, only integer and float columns are kept.
Defaults to False.
Returns:
data (same type as input): The cleaned data.
The function works with pandas DataFrame, Series, and numpy array. Depending on the 'mode' argument,
it either drops the NaN values, replaces them with zero, or replaces them with the mean of the data.
If the data is a DataFrame and num_only is set to True, the function only keeps the columns with
numeric data (int64 and float64 dtypes).
"""
# check the type of input data
if isinstance(data, pd.DataFrame):
if num_only:
data = data.select_dtypes(include=['int64', 'float64'])
else:
data_copy = data.copy()
for col in data.columns:
data[col] = pd.to_numeric(data[col], errors='coerce')
data[col].fillna(data_copy[col], inplace=True)
if mode == "drop":
data = data.dropna()
elif mode=="replace_zero":
data = data.fillna(0)
elif mode=="replace_mean":
data = data.fillna(data.mean())
elif isinstance(data, pd.Series):
if mode == "drop":
data = data.dropna()
elif mode=="replace_zero":
data = data.fillna(0)
elif mode=="replace_mean":
data = data.fillna(data.mean())
elif isinstance(data, np.ndarray):
if mode=="drop":
data = data[~np.isnan(data)]
elif mode=="replace_zero":
data = np.nan_to_num(data, nan=0)
elif mode=="replace_mean":
data = np.where(np.isnan(data), np.nanmean(data), data)
else:
raise ValueError("Unsupported data type")
return data
def boxPlot(inp_data, columName, cull_invalid=True):
"""
This function generates a boxplot for a given set of data.
Parameters:
inp_data (array or list): Input data for which the boxplot is to be created.
columName (str): The name of the column which the data represents, to be used as title for the boxplot.
cull_invalid (bool, optional): If True, invalid entries in the data are dropped. Defaults to True.
Returns:
fig (matplotlib Figure object): Figure containing the boxplot.
ax (matplotlib Axes object): Axes of the created boxplot.
The function creates a boxplot of the provided data, marking the 25th, 50th, and 75th percentiles.
The style of the boxplot is custom, with specific colors and properties for different boxplot elements.
The figure title is set to the provided column name.
"""
if cull_invalid == True:
inp_data = cleanData(inp_data, mode="drop", num_only=True)
# Create a new figure
fig, ax = plt.subplots(figsize=(10,3), dpi=200)
# Set the style to white background
sns.set_style("white")
# Calculate the min, max, Q1, and Q3 of the data
min_val = np.min(inp_data)
max_val = np.max(inp_data)
Q1 = np.percentile(inp_data, 25)
Q3 = np.percentile(inp_data, 75)
mean_val = np.mean(inp_data)
# Define the positions and labels for the x ticks
x_ticks = [] #[min_val, mean_val, Q3, max_val]
x_tick_labels =[] #[ round(v,1) for v in x_ticks]
# Add vertical lines at mean and Q3
ax.vlines([mean_val], ymin=-0.35, ymax=0.35, colors='black', linewidth=3)
ax.text(mean_val, -0.35, ' mean', ha='left', va='top', fontsize=14)
# Define the properties for the boxplot elements
boxprops = {'edgecolor': 'black', 'linewidth': 2, 'facecolor': 'white', 'alpha':0.5}
medianprops = {'color': 'gray', 'linewidth': 0}
whiskerprops = {'color': 'black', 'linewidth': 1}
capprops = {'color': 'black', 'linewidth': 2}
flierprops = {'marker':'o', 'markersize':3, 'color':'white', 'markerfacecolor':'lightgray'}
meanprops = {'color': 'black', 'linewidth': 1.0}
kwargs = {'meanline': True, 'showmeans': True}
# Create the boxplot
bplot = sns.boxplot(x=inp_data,
boxprops=boxprops,
medianprops=medianprops,
whiskerprops=whiskerprops,
capprops=capprops,
flierprops=flierprops,
meanprops=meanprops,
width=0.3,
ax=ax,
**kwargs
)
# Set the figure title and place it on the top left corner
ax.set_title(columName, loc='left', color="lightgrey", alpha =0.2)
# Remove the black outline from the figure
for spine in ax.spines.values():
spine.set_visible(False)
# Set the x-axis ticks and labels
ax.set_xticks(x_ticks)
ax.set_xticklabels(x_tick_labels)
# Remove the x-axis label
ax.set_xlabel('')
return fig, ax
def boxPlot_colorbar(inp_data, columName, cull_invalid=True, color = ['blue', 'red']):
"""
This function creates a boxplot with an integrated colorbar for a given set of data.
Parameters:
inp_data (array or list): Input data for which the boxplot is to be created.
columName (str): The name of the column which the data represents, to be used as title for the boxplot.
cull_invalid (bool, optional): If True, invalid entries in the data are dropped. Defaults to True.
color (list of str, optional): List of colors to use for the gradient colorbar. Defaults to ['blue', 'red'].
Returns:
fig (matplotlib Figure object): Figure containing the boxplot.
ax (matplotlib Axes object): Axes of the created boxplot.
The function creates a boxplot of the provided data, marking the 25th, 50th, and 75th percentiles.
It also creates a horizontal colorbar above the boxplot that serves as a gradient from the minimum
to the maximum values of the data, emphasizing the data distribution.
"""
if cull_invalid == True:
inp_data = cleanData(inp_data, mode="drop", num_only=True)
# Create a new figure
fig, (cax, ax) = plt.subplots(nrows=2, figsize=(10,3), dpi=75,
gridspec_kw={'height_ratios': [0.1, 1], 'hspace': 0.02}) # Adjust hspace for less space between plots
# Set the style to white background
sns.set_style("white")
# Calculate the min, max, Q1, and Q3 of the data
min_val = np.min(inp_data)
max_val = np.max(inp_data)
Q1 = np.percentile(inp_data, 25)
Q3 = np.percentile(inp_data, 75)
mean_val = np.mean(inp_data)
ratio = int(np.ceil((Q3 - min_val) / (max_val - min_val) * 100))
# Create a custom colormap
cmap1 = LinearSegmentedColormap.from_list("mycmap", color)
colors = np.concatenate((cmap1(np.linspace(0, 1, ratio)), np.repeat([cmap1(1.)], 100 - ratio, axis=0)))
cmap2 = ListedColormap(colors)
norm = Normalize(vmin=min_val, vmax=max_val)
sm = ScalarMappable(norm=norm, cmap=cmap2)
# Draw a vertical line at Q3
cax.axvline(Q3*0.97, color='k', linewidth=3)
cbar = fig.colorbar(sm, cax=cax, orientation='horizontal', ticks=[])
# Define the positions and labels for the x ticks
x_ticks = [] #[min_val, mean_val, Q3, max_val]
x_tick_labels =[] #[ round(v,1) for v in x_ticks]
# Add vertical lines at mean and Q3
ax.vlines([Q3], ymin=-0.35, ymax=0.35, colors='black', linewidth=3)
ax.text(Q3, 0.83, ' 75th percentile', ha='left', va='top', transform=ax.get_xaxis_transform(), fontsize=14)
# Define the properties for the boxplot elements
boxprops = {'edgecolor': 'black', 'linewidth': 2, 'facecolor': 'white', 'alpha':0.5}
medianprops = {'color': 'gray', 'linewidth': 0}
whiskerprops = {'color': 'black', 'linewidth': 1}
capprops = {'color': 'black', 'linewidth': 2}
flierprops = {'marker':'o', 'markersize':3, 'color':'white', 'markerfacecolor':'lightgray'}
meanprops = {'color': 'black', 'linewidth': 1.0}
kwargs = {'meanline': True, 'showmeans': True}
# Create the boxplo
bplot = sns.boxplot(x=inp_data,
boxprops=boxprops,
medianprops=medianprops,
whiskerprops=whiskerprops,
capprops=capprops,
flierprops=flierprops,
meanprops=meanprops,
width=0.3,
ax=ax,
**kwargs
)
# Set the figure title and place it on the top left corner
ax.set_title(columName, loc='left', color="lightgrey", alpha=0.2)
# Remove the black outline from the figure
for spine in ax.spines.values():
spine.set_visible(False)
# Set the x-axis ticks and labels
ax.set_xticks(x_ticks)
ax.set_xticklabels(x_tick_labels)
# Remove the x-axis label
ax.set_xlabel('')
return fig, ax
def histogramScore(inp_data,columName, cull_invalid=True):
# Create a new figure
if cull_invalid:
inp_data = cleanData(inp_data, mode="drop", num_only=True)
fig, ax = plt.subplots()
# Set the style to white background
sns.set_style("white")
# Create the histogram with an automatic number of bins
ax.hist(inp_data, edgecolor='black', facecolor=(0.99,0.99,0.99,1), bins='auto')
# Remove the black outline from the figure
for spine in ax.spines.values():
spine.set_visible(False)
# Make the y-axis visible
ax.spines['left'].set_visible(True)
ax.spines['left'].set_color("lightgrey")
ax.spines['bottom'].set_visible(True)
ax.spines['bottom'].set_color("lightgrey")
# Calculate the min, max, Q1, and Q3 of the data
min_val = np.min(inp_data)
max_val = np.max(inp_data)
Q1 = np.percentile(inp_data, 25)
Q3 = np.percentile(inp_data, 75)
mean_val = np.mean(inp_data)
# Calculate two equally spaced values on either side of the mean
step = (mean_val - min_val) / 2
xticks = [mean_val - 2*step, mean_val - step, mean_val, max_val]
xticks = [ round(v,1) for v in xticks]
ax.set_xticks(xticks)
# Add a dotted line at the mean value
ax.axvline(x=mean_val, ymax=0.85, linestyle='dotted', color='black')
# Add a text tag at the end of the line
ax.text(mean_val, ax.get_ylim()[1] * 0.98,"Mean", weight = "bold", size=22, ha="center",
bbox=dict(facecolor='white', edgecolor='white', boxstyle='round,pad=0.2'))
ax.text(mean_val, ax.get_ylim()[1] * 0.85, str(round(mean_val,1)) + " from " + str(round(max_val,1)), ha='center', va='bottom', size=22,
bbox=dict(facecolor='white', edgecolor='white', boxstyle='round,pad=0.2'))
# Set the figure title and place it on the top left corner
ax.set_title(columName, loc='left', color="lightgrey", alpha=0.3)
# Make the y-axis tick labels smaller
ax.tick_params(axis='y', labelsize=8)
# Remove the x-axis label
ax.set_xlabel('')
return fig, ax
# =============================================================================
#==============================================================================
def get_drawing_order(dataset, order_of_importance, sorting_direction):
# for activity nodes
temp_dataset = dataset.copy()
temp_dataset[['id1', 'id2', 'id3']] = temp_dataset['ids'].str.split(';', expand=True).astype(int)
columns_ordered = [f'id{i}' for i in order_of_importance]
sorting_direction_ordered = [direction == '+' for direction in sorting_direction]
drawing_order = temp_dataset.sort_values(columns_ordered, ascending=sorting_direction_ordered).index.tolist()
return drawing_order
def calculate_aspect_ratio(all_x_coords, all_y_coords):
x_range = max(all_x_coords) - min(all_x_coords)
y_range = max(all_y_coords) - min(all_y_coords)
aspect_ratio = y_range / x_range
size = 15
return (size, aspect_ratio) if aspect_ratio > 1 else (size / aspect_ratio, size)
def create_colorbar(fig, ax, dataset, coloring_col, cmap, title="", cb_positioning=[0.9, 0.4, 0.02, 0.38],
tick_unit="", normalize_override=("min", "max")):
divider = make_axes_locatable(ax)
divider.append_axes("right", size="2%", pad=5.55)
# Determine normalization values
if normalize_override[0] == "min":
vmin = dataset[coloring_col].min()
else:
vmin = normalize_override[0]
if normalize_override[1] == "max":
vmax = dataset[coloring_col].max()
else:
vmax = normalize_override[1]
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
colorbar_ax = fig.add_axes(cb_positioning)
colorbar = fig.colorbar(sm, cax=colorbar_ax)
min_tick = vmin
max_tick = vmax
colorbar.set_ticks([min_tick*1.05, max_tick*0.95])
colorbar.ax.set_yticklabels([
str(round(min_tick,1))+" " +tick_unit,
str(round(max_tick,1)) + " " +tick_unit
])
colorbar.ax.tick_params(labelsize=44)
colorbar.ax.annotate(title , xy=(0.55, 1.1), xycoords='axes fraction', fontsize=44,
xytext=(-45, 15), textcoords='offset points',
ha='left', va='bottom')
for a in fig.axes:
if a is not ax and a is not colorbar_ax:
a.axis('off')
return sm, colorbar
def draw_polygons(ax, dataset, x_cord_name, y_cord_name, style_dict, sm=None, drawing_order=None, cmap=None, coloring_col=None):
"""
This function draws polygons on a given axes object based on coordinates defined in the dataset.
Parameters:
ax (matplotlib.axes.Axes): The axes object on which to draw the polygons.
dataset (pd.DataFrame): The input DataFrame containing the coordinates of the polygons.
x_cord_name (str): The name of the column in the dataset that contains the x-coordinates.
y_cord_name (str): The name of the column in the dataset that contains the y-coordinates.
style_dict (dict): A dictionary defining the style parameters for the polygons.
sm (matplotlib.cm.ScalarMappable, optional): The scalar mappable object used for mapping normalized data to RGBA.
drawing_order (list, optional): A list of indices defining the order in which to draw the polygons.
cmap (matplotlib.colors.Colormap, optional): The colormap to use for coloring the polygons.
coloring_col (str, optional): The name of the column in the dataset that contains the coloring values for the polygons.
Returns:
None
The function reads the x and y coordinates from the dataset and creates a polygon for each row.
If a scalar mappable and a colormap are provided, the polygons are colored accordingly.
The order in which the polygons are drawn can be specified with the drawing_order parameter.
If no order is specified, the polygons are drawn in the order they appear in the dataset.
"""
if drawing_order is None:
drawing_order = dataset.index
for idx in drawing_order:
row = dataset.loc[idx]
# If it's a string, convert to list, if list, use directly
if isinstance(row[x_cord_name], str) and len(row[x_cord_name]) > 2:
patch_x_list = [float(i) for i in row[x_cord_name][1:-1].split(",")]
elif isinstance(row[x_cord_name], list):
patch_x_list = row[x_cord_name]
if isinstance(row[y_cord_name], str) and len(row[y_cord_name]) > 2:
patch_y_list = [float(i) for i in row[y_cord_name][1:-1].split(",")]
elif isinstance(row[y_cord_name], list):
patch_y_list = row[y_cord_name]
# Check if the row is not None and the length is greater than 0
if patch_x_list is not None and patch_y_list is not None and len(patch_x_list) > 0 and len(patch_y_list) > 0:
try:
if patch_x_list[0] != patch_x_list[-1] and patch_y_list[0] != patch_y_list[-1]:
patch_x_list.append(patch_x_list[0])
patch_y_list.append(patch_y_list[0])
if sm is not None:
normalized_data = sm.norm(row[coloring_col])
polygon = patches.Polygon(np.column_stack((patch_x_list, patch_y_list)), **style_dict, facecolor=cmap(normalized_data))
else:
polygon = patches.Polygon(np.column_stack((patch_x_list, patch_y_list)), **style_dict)
ax.add_patch(polygon)
except Exception as e:
pass
#print(f"Error occurred: {e}")
def configure_plot(ax, all_x_coords, all_y_coords, buffer=0.03):
x_range = max(all_x_coords) - min(all_x_coords)
y_range = max(all_y_coords) - min(all_y_coords)
ax.set_aspect('equal')
ax.set_xlim([min(all_x_coords) - buffer*x_range, max(all_x_coords) + buffer*x_range])
ax.set_ylim([min(all_y_coords) - buffer*y_range, max(all_y_coords) + buffer*y_range])
ax.set_xticks([])
ax.set_yticks([])
for spine in ax.spines.values():
spine.set_visible(False)
# Main script
#dataset = dataset.dropna()
# column used for heatmap and colorbar
def createActivityNodePlot(dataset,
colorbar_title="",
color="coolwarm",
data_col=None,
cb_positioning = [0.9, 0.4, 0.02, 0.38],
draw_oder_instruction=['-', '-', '+'],
tick_unit="",
normalize_override=("min", "max")):
"""
This function creates an activity node plot using the provided dataset, and optionally includes a colorbar.
Parameters:
dataset (pd.DataFrame): The input DataFrame containing the data.
colorbar_title (str, optional): The title for the colorbar. Default is an empty string.
color (str or list, optional): The colormap for the plot. Can be a matplotlib colormap name or a list of colors. Default is "coolwarm".
data_col (str, optional): The name of the column in the dataset to use for coloring the nodes. If not provided, the first column of the dataset is used.
cb_positioning (list, optional): A list of four floats defining the position and size of the colorbar. Defaults to [0.9, 0.4, 0.02, 0.38].
draw_oder_instruction (list, optional): A list of strings defining the order in which to draw the polygons. Defaults to ['-', '-', '+'].
tick_unit (str, optional): The unit for the ticks on the colorbar. Default is an empty string.
Returns:
fig (matplotlib.figure.Figure): The created figure object.
ax (matplotlib.axes._subplots.AxesSubplot): The created Axes object.
The function creates an activity node plot with optional coloring based on a data column.
The plot includes polygons representing nodes, and optionally a colorbar.
The order in which the nodes are drawn can be specified.
The plot's aspect ratio is calculated based on the provided coordinates.
"""
if data_col == None:
coloring_col = dataset.columns[0]
else:
coloring_col = data_col
# not very elegant
all_x_coords = []
all_y_coords = []
for idx, row in dataset.iterrows():
# If it's a string, convert to list, if list, use directly
if isinstance(row["patches_x_AN"], str) and len(row["patches_x_AN"]) > 2:
patch_x_list = [float(i) for i in row["patches_x_AN"][1:-1].split(",")]
elif isinstance(row["patches_x_AN"], list):
patch_x_list = row["patches_x_AN"]
if isinstance(row["patches_y_AN"], str) and len(row["patches_y_AN"]) > 2:
patch_y_list = [float(i) for i in row["patches_y_AN"][1:-1].split(",")]
elif isinstance(row["patches_y_AN"], list):
patch_y_list = row["patches_y_AN"]
all_x_coords.extend(patch_x_list)
all_y_coords.extend(patch_y_list)
figsize = calculate_aspect_ratio(all_x_coords, all_y_coords)
fig, ax = plt.subplots(figsize=figsize)
# color map
if type(color) == type([]):
cmap = LinearSegmentedColormap.from_list('custom_color', color)
else:
cmap = plt.cm.get_cmap(color)
# Activity Node geometry
style_dict_an = {'linewidth': 1, 'edgecolor': "Black"}
color_data_exists = is_numeric_dtype(dataset[coloring_col])
if color_data_exists:
sm, colorbar = create_colorbar(fig, ax, dataset, coloring_col, cmap, colorbar_title,
cb_positioning = cb_positioning, tick_unit=tick_unit,
normalize_override=normalize_override)
drawing_order = get_drawing_order(dataset, [1, 3, 2], draw_oder_instruction)
draw_polygons(ax,
dataset,
"patches_x_AN",
"patches_y_AN",
style_dict_an,
sm,
drawing_order,
cmap,
coloring_col)
style_dict_bridges = {'linewidth': 1, 'edgecolor': "Black", 'facecolor':"Black"}
draw_polygons(ax,
dataset,
"patches_x_Bridges",
"patches_y_Bridges",
style_dict_bridges,
cmap,
coloring_col=coloring_col,
)
configure_plot(ax, all_x_coords, all_y_coords)
return fig, ax
def radar(values_norm,
labels,
color,
cluster_name,
factor=100,
ax_multi = None,
fig_multi=None,
label_font_size =6,
num_datapoints=None):
"""
This function creates a radar chart (also known as a spider or star chart) from given normalized values and labels.
Parameters:
values_norm (list of numbers): Normalized values to plot on the radar chart, these values will be scaled within the function.
labels (list of str): Labels for the axes of the radar chart.
color (str): Color of the fill and outline on the radar chart.
cluster_name (str): Title for the radar chart.
factor (int, optional): Scaling factor for the data, defaults to 100.
ax_multi (matplotlib Axes object, optional): Predefined matplotlib Axes. If None, a new Axes object is created.
fig_multi (matplotlib Figure object, optional): Predefined matplotlib Figure for the plot. If None, a new Figure is created.
label_font_size (int, optional): Font size for the axis labels, defaults to 6.
num_datapoints (int, optional): Number of datapoints used to calculate the values, will be displayed in the plot if provided.
Returns:
fig (matplotlib Figure object): Figure containing the radar chart.
ax (matplotlib Axes object): Axes of the created radar chart.
This function plots each value from 'values_norm' as an axis on the radar chart,
the aesthetics of the plot such as color and font size are customizable. The chart
is scaled using the provided factor. 'values_norm' should be preprocessed outside
of this function: they should be the mean values of your original data, normalized
to be between 0 and 1.
"""
# ax = plt.subplot(polar=True)
if ax_multi == None or fig_multi == None:
fig, ax = plt.subplots(figsize=(3.5, 3.5), subplot_kw=dict(polar=True), dpi=200)
else:
fig = fig_multi
ax = ax_multi
values_norm = [v*factor for v in values_norm]
# Number of variables we're plotting.
num_vars = len(labels)
# Split the circle into even parts and save the angles
# so we know where to put each axis.
angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
# The plot is a circle, so we need to "complete the loop"
# and append the start value to the end.
values_norm += values_norm[:1]
angles += angles[:1]
# Draw the outline of our data.
ax.plot(angles, values_norm, color=color, linewidth=2)
# Fill it in.
ax.fill(angles, values_norm, color=color, alpha=0.15)
# Fix axis to go in the right order and start at 12 o'clock.
ax.set_theta_offset(np.pi / 2)
ax.set_theta_direction(-1)
# Draw axis lines for each angle and label.
labels += labels[:1]
ax.set_thetagrids(np.degrees(angles), labels)
# Go through labels and adjust alignment based on where
# it is in the circle.
for label, angle in zip(ax.get_xticklabels(), angles):
if angle in (0, np.pi):
label.set_horizontalalignment('center')
elif 0 < angle < np.pi:
label.set_horizontalalignment('left')
else:
label.set_horizontalalignment('right')
label.set_fontsize(label_font_size)
# Ensure radar goes from 0 to 100.
ax.set_ylim(0, 100)
# of the first two axes.
ax.set_rlabel_position(180 / num_vars)
# Add some custom styling.
# Change the color of the tick labels.
ax.tick_params(colors='#222222')
# Make the y-axis (0-100) labels smaller.
ax.tick_params(axis='y', labelsize=6)
# Change the color of the circular gridlines.
ax.grid(color='#AAAAAA')
# Change the color of the outermost gridline (the spine).
ax.spines['polar'].set_color('#222222')
# Change the background color inside the circle itself.
ax.set_facecolor('#FAFAFA')
# Lastly, give the chart a title and give it some
# padding above the "Acceleration" label.
ax.set_title(cluster_name, y=1.11)
# Add this at the end of your function
if num_datapoints is not None:
# plt.figtext adds text to the figure as a whole, outside individual subplots
# The parameters are (x, y, text), where x and y are in figure coordinates
plt.figtext(0.5, -0.05, f'datapoints: {num_datapoints}', ha='center')
return fig, ax
def gh_color_blueRed():
# grasshoper color scheme
color_list = [[15,16,115],
[177,198,242],
[251,244,121],
[222,140,61],
[183,60,34]]
# Scale RGB values to [0,1] range
color_list = [[c/255. for c in color] for color in color_list]
return color_list
def linear_regression_with_residuals(
df, x_name, y_name, buffer=5, data_range_max=None, max_residual_color=None, rescale_range=None, generateName=False
):
"""
Generate a scatter plot with linear regression, residuals, and a color-coded line of equality.
Parameters:
df (DataFrame): The DataFrame containing the data.
x_name (str): The name of the x-axis variable.
y_name (str): The name of the y-axis variable.
buffer (int, optional): Buffer as a percentage of data range for plot margins. Default is 5.
data_range_max (float, optional): Maximum value for x and y axes. Default is None (auto-calculated).
max_residual_color (float, optional): Maximum residual value for color normalization. Default is None (auto-calculated).
rescale_range (tuple, optional): Rescale both x and y to the specified range. Default is None (no rescaling).
save_png (str, optional): File path to save the plot as a PNG image. Default is None (no saving).
date_source (str, optional): Date source identifier for the filename. Default is None.
Returns:
plt: Matplotlib figure for the generated plot.
"""
# Extract x and y values from the DataFrame
x = df[x_name].values
y = df[y_name].values
# Rescale x and y if rescale_range is provided
if rescale_range:
x_min, x_max = rescale_range
x = (x - min(x)) / (max(x) - min(x)) * (x_max - x_min) + x_min
y = (y - min(y)) / (max(y) - min(y)) * (x_max - x_min) + x_min
# Calculate R2 score
r2 = r2_score(x, y)
print(f"R2 Score: {r2}")
# Calculate residuals in relation to the 45-degree line
residuals_45 = y - x.flatten()
# Calculate the data range with a buffer
if data_range_max:
data_min = 0
data_max = data_range_max
else:
data_min = min(min(x), min(y))
data_max = max(max(x), max(y))
buffer_value = (data_max - data_min) * (buffer / 100)
# Create a square plot with the same range for both axes
plt.figure()
colormap = 'bwr' # Choose a colormap
cmap = plt.get_cmap(colormap)
plt.rcParams['font.family'] = 'DejaVu Sans'
# Shift the midpoint of the colormap to zero
if max_residual_color is None:
max_residual_color = max(abs(residuals_45))
norm = plt.Normalize(-max_residual_color, max_residual_color)
colors = np.array(cmap(norm(residuals_45)), dtype=object)
# Darken the edge color by making it 90% darker than the fill color
edge_colors = [tuple(0.9 * np.array(c)) for c in colors]
# Add a contour to scatter points with the same color as the point fill
scatter = plt.scatter(x, y, c=colors, label='True values', edgecolors=edge_colors, linewidths=2, zorder=3)
# Plot the line of equality (x == y)
combined_line = plt.plot([data_min - buffer_value, data_max + buffer_value], [data_min - buffer_value, data_max + buffer_value],
color='black', linewidth=1, zorder=5)
# Calculate and plot residuals in relation to the line of equality
for i in range(len(x)):
plt.plot([x[i], x[i]], [y[i], x[i]], color='gray', linestyle='--', linewidth=0.5, zorder=1)
# Plot the linear regression line
m, b = np.polyfit(x, y, 1)
regression_line = plt.plot(x, m * x + b, color='grey', linestyle='dotted', linewidth=1, label='Linear Regression line', zorder=4)
# Calculate the R2 score text position
text_x = data_min + 0.01 * (data_max - data_min)
text_y = data_max - 0.01 * (data_max - data_min)
# Annotate the plot with the R2 score
plt.text(text_x, text_y, f'$R^2$ Score: {r2:.2f}', fontsize=8, color='black')
# Add colorbar for residuals (smaller and within the plot)
sm = plt.cm.ScalarMappable(cmap=colormap, norm=norm)
sm.set_array([])
cbar = plt.colorbar(sm, ax=plt.gca(), shrink=0.2, aspect=15, pad=0.03)
cbar.set_label('Residuals (line of Equality)', fontsize=8)
# Create separate legend handles and labels
legend_handles = [scatter, regression_line[0], combined_line[0]]
legend_labels = ['True values', 'Linear Regression line', 'Line of Equality']
# Create the combined legend
combined_legend = plt.legend(handles=legend_handles, labels=legend_labels, loc='lower right', fontsize=8)
# Set the same limits for both x and y axes with a buffer
plt.xlim(data_min - buffer_value, data_max + buffer_value)
plt.ylim(data_min - buffer_value, data_max + buffer_value)
plt.gca().add_artist(combined_legend) # Add the combined legend to the plot
plt.title('Linear Regression Visualization with Residuals (line of Equality)')
plt.xlabel(" ".join(x_name.split("+"))[0].capitalize() + " ".join(x_name.split("+"))[1:])
plt.ylabel(" ".join(y_name.split("+"))[0].capitalize() + " ".join(y_name.split("+"))[1:])
# Add very light grey background grid lines
plt.grid(True, color='lightgrey', linestyle='--', alpha=0.6, zorder=0)
if generateName:
# Plot name
plt_name = "linearRegr_" + "".join(word.capitalize() for word in x_name.split("+")) + "_vs_" + "".join(
word.capitalize() for word in y_name.split("+"))
return plt, plt_name
else:
return plt
|