File size: 31,973 Bytes
debd61e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
import json
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

import numpy as np
import math

import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.colors as colors
from matplotlib.colors import ListedColormap, LinearSegmentedColormap, Normalize
from matplotlib.cm import ScalarMappable
import pandas as pd
import numpy as np
from pandas.api.types import is_numeric_dtype
from mpl_toolkits.axes_grid1 import make_axes_locatable

from sklearn.metrics import r2_score

def cleanData(data, mode="drop", num_only=False):
    """
    This function cleans the input data based on the specified mode.

    Parameters:
    data (pd.DataFrame, pd.Series, or np.ndarray): The input data to be cleaned.
    mode (str, optional): The cleaning method, one of "drop", "replace_zero", or "replace_mean". 
                          "drop" removes NaN values, 
                          "replace_zero" replaces NaN values with zeros,
                          "replace_mean" replaces NaN values with the mean of the data.
                          Defaults to "drop".
    num_only (bool, optional): If True and data is a DataFrame, only integer and float columns are kept.
                               Defaults to False.

    Returns:
    data (same type as input): The cleaned data.

    The function works with pandas DataFrame, Series, and numpy array. Depending on the 'mode' argument, 
    it either drops the NaN values, replaces them with zero, or replaces them with the mean of the data. 
    If the data is a DataFrame and num_only is set to True, the function only keeps the columns with 
    numeric data (int64 and float64 dtypes).
    """
    # check the type of input data
    if isinstance(data, pd.DataFrame):
        if num_only:
            data = data.select_dtypes(include=['int64', 'float64'])
        else:
          data_copy = data.copy()
          for col in data.columns:
              data[col] = pd.to_numeric(data[col], errors='coerce')
              data[col].fillna(data_copy[col], inplace=True)
  
        if mode == "drop":
            data = data.dropna()
        elif mode=="replace_zero":
            data = data.fillna(0)
        elif mode=="replace_mean":
            data = data.fillna(data.mean())

    elif isinstance(data, pd.Series):
        if mode == "drop":
            data = data.dropna()
        elif mode=="replace_zero":
            data = data.fillna(0)
        elif mode=="replace_mean":
            data = data.fillna(data.mean())

    elif isinstance(data, np.ndarray):
        if mode=="drop":
            data = data[~np.isnan(data)]
        elif mode=="replace_zero":
            data = np.nan_to_num(data, nan=0)
        elif mode=="replace_mean":
            data = np.where(np.isnan(data), np.nanmean(data), data)

    else:
        raise ValueError("Unsupported data type")

    return data

def boxPlot(inp_data, columName, cull_invalid=True):
  """
    This function generates a boxplot for a given set of data.

    Parameters:
    inp_data (array or list): Input data for which the boxplot is to be created.
    columName (str): The name of the column which the data represents, to be used as title for the boxplot.
    cull_invalid (bool, optional): If True, invalid entries in the data are dropped. Defaults to True.
    
    Returns:
    fig (matplotlib Figure object): Figure containing the boxplot.
    ax (matplotlib Axes object): Axes of the created boxplot.

    The function creates a boxplot of the provided data, marking the 25th, 50th, and 75th percentiles. 
    The style of the boxplot is custom, with specific colors and properties for different boxplot elements. 
    The figure title is set to the provided column name.
    """
  if cull_invalid == True:
    inp_data = cleanData(inp_data, mode="drop", num_only=True)

  # Create a new figure
  fig, ax = plt.subplots(figsize=(10,3), dpi=200)

  # Set the style to white background
  sns.set_style("white")

  # Calculate the min, max, Q1, and Q3 of the data
  min_val = np.min(inp_data)
  max_val = np.max(inp_data)
  Q1 = np.percentile(inp_data, 25)
  Q3 = np.percentile(inp_data, 75)
  mean_val = np.mean(inp_data)

  # Define the positions and labels for the x ticks
  x_ticks = [] #[min_val, mean_val, Q3, max_val]
  x_tick_labels =[] #[ round(v,1) for v in x_ticks]

  # Add vertical lines at mean and Q3
  ax.vlines([mean_val], ymin=-0.35, ymax=0.35, colors='black', linewidth=3)
  ax.text(mean_val, -0.35, '  mean', ha='left', va='top',  fontsize=14)

  # Define the properties for the boxplot elements
  boxprops = {'edgecolor': 'black', 'linewidth': 2, 'facecolor': 'white', 'alpha':0.5}
  medianprops = {'color': 'gray', 'linewidth': 0}
  whiskerprops = {'color': 'black', 'linewidth': 1}
  capprops = {'color': 'black', 'linewidth': 2}
  flierprops = {'marker':'o', 'markersize':3, 'color':'white',  'markerfacecolor':'lightgray'}
  meanprops = {'color': 'black', 'linewidth': 1.0}
  kwargs = {'meanline': True, 'showmeans': True}

  # Create the boxplot
  bplot = sns.boxplot(x=inp_data, 
              boxprops=boxprops, 
              medianprops=medianprops, 
              whiskerprops=whiskerprops, 
              capprops=capprops,
              flierprops=flierprops,
              meanprops=meanprops,
              width=0.3,
              ax=ax,
              **kwargs
              )

  # Set the figure title and place it on the top left corner
  ax.set_title(columName, loc='left', color="lightgrey", alpha =0.2)

  # Remove the black outline from the figure
  for spine in ax.spines.values():
      spine.set_visible(False)

  # Set the x-axis ticks and labels
  ax.set_xticks(x_ticks)
  ax.set_xticklabels(x_tick_labels)

  # Remove the x-axis label
  ax.set_xlabel('')
    
  return fig, ax



def boxPlot_colorbar(inp_data, columName, cull_invalid=True, color =  ['blue', 'red']):
  """
    This function creates a boxplot with an integrated colorbar for a given set of data. 

    Parameters:
    inp_data (array or list): Input data for which the boxplot is to be created.
    columName (str): The name of the column which the data represents, to be used as title for the boxplot.
    cull_invalid (bool, optional): If True, invalid entries in the data are dropped. Defaults to True.
    color (list of str, optional): List of colors to use for the gradient colorbar. Defaults to ['blue', 'red'].
    
    Returns:
    fig (matplotlib Figure object): Figure containing the boxplot.
    ax (matplotlib Axes object): Axes of the created boxplot.

    The function creates a boxplot of the provided data, marking the 25th, 50th, and 75th percentiles. 
    It also creates a horizontal colorbar above the boxplot that serves as a gradient from the minimum 
    to the maximum values of the data, emphasizing the data distribution.
    """
  if cull_invalid == True:
    inp_data = cleanData(inp_data, mode="drop", num_only=True)

  # Create a new figure
    fig, (cax, ax) = plt.subplots(nrows=2, figsize=(10,3), dpi=75,
        gridspec_kw={'height_ratios': [0.1, 1], 'hspace': 0.02}) # Adjust hspace for less space between plots


  # Set the style to white background
  sns.set_style("white")

  # Calculate the min, max, Q1, and Q3 of the data
  min_val = np.min(inp_data)
  max_val = np.max(inp_data)
  Q1 = np.percentile(inp_data, 25)
  Q3 = np.percentile(inp_data, 75)
  mean_val = np.mean(inp_data)

  ratio = int(np.ceil((Q3 - min_val) / (max_val - min_val) * 100))

  # Create a custom colormap
  cmap1 = LinearSegmentedColormap.from_list("mycmap", color)
  colors = np.concatenate((cmap1(np.linspace(0, 1, ratio)), np.repeat([cmap1(1.)], 100 - ratio, axis=0)))
  cmap2 = ListedColormap(colors)

  norm = Normalize(vmin=min_val, vmax=max_val)
  sm = ScalarMappable(norm=norm, cmap=cmap2)

  # Draw a vertical line at Q3
  cax.axvline(Q3*0.97, color='k', linewidth=3)
  cbar = fig.colorbar(sm, cax=cax, orientation='horizontal', ticks=[])

  # Define the positions and labels for the x ticks
  x_ticks = [] #[min_val, mean_val, Q3, max_val]
  x_tick_labels =[] #[ round(v,1) for v in x_ticks]

  # Add vertical lines at mean and Q3
  ax.vlines([Q3], ymin=-0.35, ymax=0.35, colors='black', linewidth=3)
  ax.text(Q3, 0.83, '  75th percentile', ha='left', va='top', transform=ax.get_xaxis_transform(), fontsize=14)


  # Define the properties for the boxplot elements
  boxprops = {'edgecolor': 'black', 'linewidth': 2, 'facecolor': 'white', 'alpha':0.5}
  medianprops = {'color': 'gray', 'linewidth': 0}
  whiskerprops = {'color': 'black', 'linewidth': 1}
  capprops = {'color': 'black', 'linewidth': 2}
  flierprops = {'marker':'o', 'markersize':3, 'color':'white',  'markerfacecolor':'lightgray'}
  meanprops = {'color': 'black', 'linewidth': 1.0}
  kwargs = {'meanline': True, 'showmeans': True}

  # Create the boxplo
  bplot = sns.boxplot(x=inp_data, 
              boxprops=boxprops, 
              medianprops=medianprops, 
              whiskerprops=whiskerprops, 
              capprops=capprops,
              flierprops=flierprops,
              meanprops=meanprops,
              width=0.3,
              ax=ax,
              **kwargs
              )

  # Set the figure title and place it on the top left corner
  ax.set_title(columName, loc='left', color="lightgrey", alpha=0.2)

  # Remove the black outline from the figure
  for spine in ax.spines.values():
      spine.set_visible(False)

  # Set the x-axis ticks and labels
  ax.set_xticks(x_ticks)
  ax.set_xticklabels(x_tick_labels)

  # Remove the x-axis label
  ax.set_xlabel('')
    
  return fig, ax






def histogramScore(inp_data,columName, cull_invalid=True):
  # Create a new figure
  if cull_invalid:
    inp_data = cleanData(inp_data, mode="drop", num_only=True)

  fig, ax = plt.subplots()

  # Set the style to white background
  sns.set_style("white")

  # Create the histogram with an automatic number of bins
  ax.hist(inp_data, edgecolor='black', facecolor=(0.99,0.99,0.99,1), bins='auto')

  # Remove the black outline from the figure
  for spine in ax.spines.values():
      spine.set_visible(False)

  # Make the y-axis visible
  ax.spines['left'].set_visible(True)
  ax.spines['left'].set_color("lightgrey")
  ax.spines['bottom'].set_visible(True)
  ax.spines['bottom'].set_color("lightgrey")

  # Calculate the min, max, Q1, and Q3 of the data
  min_val = np.min(inp_data)
  max_val = np.max(inp_data)
  Q1 = np.percentile(inp_data, 25)
  Q3 = np.percentile(inp_data, 75)
  mean_val = np.mean(inp_data)



  # Calculate two equally spaced values on either side of the mean
  step = (mean_val - min_val) / 2
  xticks = [mean_val - 2*step, mean_val - step, mean_val, max_val]
  xticks = [ round(v,1) for v in xticks]
 
  ax.set_xticks(xticks)

  # Add a dotted line at the mean value
  ax.axvline(x=mean_val, ymax=0.85, linestyle='dotted', color='black')

  # Add a text tag at the end of the line  
  ax.text(mean_val, ax.get_ylim()[1] * 0.98,"Mean", weight = "bold", size=22, ha="center", 
            bbox=dict(facecolor='white', edgecolor='white', boxstyle='round,pad=0.2'))
  ax.text(mean_val, ax.get_ylim()[1] * 0.85, str(round(mean_val,1)) + " from " + str(round(max_val,1)), ha='center', va='bottom', size=22,
            bbox=dict(facecolor='white', edgecolor='white', boxstyle='round,pad=0.2'))

  # Set the figure title and place it on the top left corner
  ax.set_title(columName, loc='left', color="lightgrey", alpha=0.3)

  # Make the y-axis tick labels smaller
  ax.tick_params(axis='y', labelsize=8)

  # Remove the x-axis label
  ax.set_xlabel('')


  return fig, ax


# =============================================================================
#==============================================================================


def get_drawing_order(dataset, order_of_importance, sorting_direction):
    # for activity nodes 
    temp_dataset = dataset.copy()
    temp_dataset[['id1', 'id2', 'id3']] = temp_dataset['ids'].str.split(';', expand=True).astype(int)
    columns_ordered = [f'id{i}' for i in order_of_importance]
    sorting_direction_ordered = [direction == '+' for direction in sorting_direction]
    drawing_order = temp_dataset.sort_values(columns_ordered, ascending=sorting_direction_ordered).index.tolist()
    return drawing_order


def calculate_aspect_ratio(all_x_coords, all_y_coords):
    x_range = max(all_x_coords) - min(all_x_coords)
    y_range = max(all_y_coords) - min(all_y_coords)
    aspect_ratio = y_range / x_range
    size = 15
    return (size, aspect_ratio) if aspect_ratio > 1 else (size / aspect_ratio, size)


def create_colorbar(fig, ax, dataset, coloring_col, cmap, title="", cb_positioning=[0.9, 0.4, 0.02, 0.38],
                     tick_unit="", normalize_override=("min", "max")):
    
    divider = make_axes_locatable(ax)
    divider.append_axes("right", size="2%", pad=5.55)

    # Determine normalization values
    if normalize_override[0] == "min":
        vmin = dataset[coloring_col].min()
    else:
        vmin = normalize_override[0]

    if normalize_override[1] == "max":
        vmax = dataset[coloring_col].max()
    else:
        vmax = normalize_override[1]

    sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))

    colorbar_ax = fig.add_axes(cb_positioning)
    colorbar = fig.colorbar(sm, cax=colorbar_ax)

    min_tick = vmin
    max_tick = vmax
    colorbar.set_ticks([min_tick*1.05, max_tick*0.95])
    colorbar.ax.set_yticklabels([
                                 str(round(min_tick,1))+" " +tick_unit, 
                                 str(round(max_tick,1)) + " " +tick_unit
                                 ])
    colorbar.ax.tick_params(labelsize=44)
    

    colorbar.ax.annotate(title , xy=(0.55, 1.1), xycoords='axes fraction', fontsize=44,
                     xytext=(-45, 15), textcoords='offset points',
                     ha='left', va='bottom')

    for a in fig.axes:
        if a is not ax and a is not colorbar_ax:
            a.axis('off')

    return sm, colorbar



def draw_polygons(ax, dataset, x_cord_name, y_cord_name, style_dict, sm=None, drawing_order=None, cmap=None, coloring_col=None):
    """
    This function draws polygons on a given axes object based on coordinates defined in the dataset.

    Parameters:
    ax (matplotlib.axes.Axes): The axes object on which to draw the polygons.
    dataset (pd.DataFrame): The input DataFrame containing the coordinates of the polygons.
    x_cord_name (str): The name of the column in the dataset that contains the x-coordinates.
    y_cord_name (str): The name of the column in the dataset that contains the y-coordinates.
    style_dict (dict): A dictionary defining the style parameters for the polygons.
    sm (matplotlib.cm.ScalarMappable, optional): The scalar mappable object used for mapping normalized data to RGBA.
    drawing_order (list, optional): A list of indices defining the order in which to draw the polygons.
    cmap (matplotlib.colors.Colormap, optional): The colormap to use for coloring the polygons.
    coloring_col (str, optional): The name of the column in the dataset that contains the coloring values for the polygons.

    Returns:
    None

    The function reads the x and y coordinates from the dataset and creates a polygon for each row. 
    If a scalar mappable and a colormap are provided, the polygons are colored accordingly. 
    The order in which the polygons are drawn can be specified with the drawing_order parameter. 
    If no order is specified, the polygons are drawn in the order they appear in the dataset.
    """
    if drawing_order is None:
        drawing_order = dataset.index
    for idx in drawing_order:
        row  = dataset.loc[idx]

        # If it's a string, convert to list, if list, use directly
        if isinstance(row[x_cord_name], str) and len(row[x_cord_name]) > 2:
            patch_x_list = [float(i) for i in row[x_cord_name][1:-1].split(",")]
        elif isinstance(row[x_cord_name], list):
            patch_x_list = row[x_cord_name]

        if isinstance(row[y_cord_name], str) and len(row[y_cord_name]) > 2:
            patch_y_list = [float(i) for i in row[y_cord_name][1:-1].split(",")]
        elif isinstance(row[y_cord_name], list):
            patch_y_list = row[y_cord_name]

        # Check if the row is not None and the length is greater than 0
        if patch_x_list is not None and patch_y_list is not None and len(patch_x_list) > 0 and len(patch_y_list) > 0:
            try:
                if patch_x_list[0] != patch_x_list[-1] and patch_y_list[0] != patch_y_list[-1]:
                    patch_x_list.append(patch_x_list[0])
                    patch_y_list.append(patch_y_list[0])

                if sm is not None:
                    normalized_data = sm.norm(row[coloring_col])
                    polygon = patches.Polygon(np.column_stack((patch_x_list, patch_y_list)), **style_dict, facecolor=cmap(normalized_data))

                else:
                    polygon = patches.Polygon(np.column_stack((patch_x_list, patch_y_list)), **style_dict)

                ax.add_patch(polygon)
            except Exception as e:
               pass
               #print(f"Error occurred: {e}")


def configure_plot(ax, all_x_coords, all_y_coords, buffer=0.03):
    x_range = max(all_x_coords) - min(all_x_coords)
    y_range = max(all_y_coords) - min(all_y_coords)
    
    ax.set_aspect('equal')
    ax.set_xlim([min(all_x_coords) - buffer*x_range, max(all_x_coords) + buffer*x_range])
    ax.set_ylim([min(all_y_coords) - buffer*y_range, max(all_y_coords) + buffer*y_range])
    ax.set_xticks([])
    ax.set_yticks([])
    for spine in ax.spines.values():
        spine.set_visible(False)


# Main script
#dataset = dataset.dropna()

# column used for heatmap and colorbar
def createActivityNodePlot(dataset, 
                           colorbar_title="", 
                           color="coolwarm", 
                           data_col=None, 
                           cb_positioning = [0.9, 0.4, 0.02, 0.38], 
                           draw_oder_instruction=['-', '-', '+'],
                           tick_unit="",
                           normalize_override=("min", "max")):
    
    """
    This function creates an activity node plot using the provided dataset, and optionally includes a colorbar. 

    Parameters:
    dataset (pd.DataFrame): The input DataFrame containing the data.
    colorbar_title (str, optional): The title for the colorbar. Default is an empty string.
    color (str or list, optional): The colormap for the plot. Can be a matplotlib colormap name or a list of colors. Default is "coolwarm".
    data_col (str, optional): The name of the column in the dataset to use for coloring the nodes. If not provided, the first column of the dataset is used.
    cb_positioning (list, optional): A list of four floats defining the position and size of the colorbar. Defaults to [0.9, 0.4, 0.02, 0.38].
    draw_oder_instruction (list, optional): A list of strings defining the order in which to draw the polygons. Defaults to ['-', '-', '+'].
    tick_unit (str, optional): The unit for the ticks on the colorbar. Default is an empty string.

    Returns:
    fig (matplotlib.figure.Figure): The created figure object.
    ax (matplotlib.axes._subplots.AxesSubplot): The created Axes object.

    The function creates an activity node plot with optional coloring based on a data column. 
    The plot includes polygons representing nodes, and optionally a colorbar. 
    The order in which the nodes are drawn can be specified. 
    The plot's aspect ratio is calculated based on the provided coordinates.
    """
    
    if data_col == None:
        coloring_col = dataset.columns[0]
    else:
        coloring_col = data_col

    # not very elegant
    all_x_coords = []
    all_y_coords = []

    for idx, row in dataset.iterrows():
        # If it's a string, convert to list, if list, use directly
        if isinstance(row["patches_x_AN"], str) and len(row["patches_x_AN"]) > 2:
            patch_x_list = [float(i) for i in row["patches_x_AN"][1:-1].split(",")]
        elif isinstance(row["patches_x_AN"], list):
            patch_x_list = row["patches_x_AN"]

        if isinstance(row["patches_y_AN"], str) and len(row["patches_y_AN"]) > 2:
            patch_y_list = [float(i) for i in row["patches_y_AN"][1:-1].split(",")]
        elif isinstance(row["patches_y_AN"], list):
            patch_y_list = row["patches_y_AN"]
        all_x_coords.extend(patch_x_list)
        all_y_coords.extend(patch_y_list)
    
    figsize = calculate_aspect_ratio(all_x_coords, all_y_coords)
    fig, ax = plt.subplots(figsize=figsize)

    # color map
    if type(color) == type([]):
        
        cmap = LinearSegmentedColormap.from_list('custom_color', color)
    else:
        cmap = plt.cm.get_cmap(color)

    # Activity Node geometry
    style_dict_an = {'linewidth': 1, 'edgecolor': "Black"} 

    color_data_exists = is_numeric_dtype(dataset[coloring_col])

    if color_data_exists:
        sm, colorbar = create_colorbar(fig, ax, dataset, coloring_col, cmap, colorbar_title, 
                                       cb_positioning = cb_positioning, tick_unit=tick_unit,
                                       normalize_override=normalize_override)
    drawing_order = get_drawing_order(dataset, [1, 3, 2], draw_oder_instruction)

    draw_polygons(ax, 
                dataset, 
                "patches_x_AN", 
                "patches_y_AN", 
                style_dict_an, 
                sm,
                drawing_order,
                cmap,
                coloring_col)

    style_dict_bridges = {'linewidth': 1, 'edgecolor': "Black", 'facecolor':"Black"} 


    draw_polygons(ax, 
                dataset, 
                "patches_x_Bridges", 
                "patches_y_Bridges", 
                style_dict_bridges,
                cmap,
                coloring_col=coloring_col,
                )

    configure_plot(ax, all_x_coords, all_y_coords)
    return fig, ax



    
def radar(values_norm,
          labels,  
          color, 
          cluster_name, 
          factor=100, 
          ax_multi = None, 
          fig_multi=None, 
          label_font_size =6,
          num_datapoints=None):
        
    """
    This function creates a radar chart (also known as a spider or star chart) from given normalized values and labels.

    Parameters:
    values_norm (list of numbers): Normalized values to plot on the radar chart, these values will be scaled within the function.
    labels (list of str): Labels for the axes of the radar chart.
    color (str): Color of the fill and outline on the radar chart.
    cluster_name (str): Title for the radar chart.
    factor (int, optional): Scaling factor for the data, defaults to 100.
    ax_multi (matplotlib Axes object, optional): Predefined matplotlib Axes. If None, a new Axes object is created.
    fig_multi (matplotlib Figure object, optional): Predefined matplotlib Figure for the plot. If None, a new Figure is created.
    label_font_size (int, optional): Font size for the axis labels, defaults to 6.
    num_datapoints (int, optional): Number of datapoints used to calculate the values, will be displayed in the plot if provided.

    Returns:
    fig (matplotlib Figure object): Figure containing the radar chart.
    ax (matplotlib Axes object): Axes of the created radar chart.

    This function plots each value from 'values_norm' as an axis on the radar chart, 
    the aesthetics of the plot such as color and font size are customizable. The chart 
    is scaled using the provided factor. 'values_norm' should be preprocessed outside 
    of this function: they should be the mean values of your original data, normalized 
    to be between 0 and 1.
    """

    # ax = plt.subplot(polar=True)
    if ax_multi == None or fig_multi == None:
      fig, ax = plt.subplots(figsize=(3.5, 3.5), subplot_kw=dict(polar=True), dpi=200)
    else:
      fig = fig_multi
      ax = ax_multi

    values_norm = [v*factor for v in values_norm]

    # Number of variables we're plotting.
    num_vars = len(labels)

    # Split the circle into even parts and save the angles
    # so we know where to put each axis.
    angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()

    # The plot is a circle, so we need to "complete the loop"
    # and append the start value to the end.
    values_norm += values_norm[:1]
    angles += angles[:1]

    # Draw the outline of our data.
    ax.plot(angles, values_norm, color=color, linewidth=2)

    # Fill it in.
    ax.fill(angles, values_norm, color=color, alpha=0.15)

    # Fix axis to go in the right order and start at 12 o'clock.
    ax.set_theta_offset(np.pi / 2)
    ax.set_theta_direction(-1)

    # Draw axis lines for each angle and label.
    labels += labels[:1]
    ax.set_thetagrids(np.degrees(angles), labels)
   
    # Go through labels and adjust alignment based on where
    # it is in the circle.
    for label, angle in zip(ax.get_xticklabels(), angles):
        if angle in (0, np.pi):
            label.set_horizontalalignment('center')
        elif 0 < angle < np.pi:
            label.set_horizontalalignment('left')
        else:
            label.set_horizontalalignment('right')
        label.set_fontsize(label_font_size)

    # Ensure radar goes from 0 to 100.
    ax.set_ylim(0, 100)

    # of the first two axes.
    ax.set_rlabel_position(180 / num_vars)

    # Add some custom styling.
    # Change the color of the tick labels.
    ax.tick_params(colors='#222222')

    # Make the y-axis (0-100) labels smaller.
    ax.tick_params(axis='y', labelsize=6)
    # Change the color of the circular gridlines.
    ax.grid(color='#AAAAAA')
    # Change the color of the outermost gridline (the spine).
    ax.spines['polar'].set_color('#222222')
    # Change the background color inside the circle itself.
    ax.set_facecolor('#FAFAFA')

    # Lastly, give the chart a title and give it some
    # padding above the "Acceleration" label.
    ax.set_title(cluster_name, y=1.11)

     # Add this at the end of your function
    if num_datapoints is not None:
        # plt.figtext adds text to the figure as a whole, outside individual subplots
        # The parameters are (x, y, text), where x and y are in figure coordinates
        plt.figtext(0.5, -0.05, f'datapoints: {num_datapoints}', ha='center')

    return fig, ax


def gh_color_blueRed():
    # grasshoper color scheme 
    color_list = [[15,16,115],
            [177,198,242],
            [251,244,121],
            [222,140,61],
            [183,60,34]]
    # Scale RGB values to [0,1] range
    color_list = [[c/255. for c in color] for color in color_list]
    return color_list


def linear_regression_with_residuals(
    df, x_name, y_name, buffer=5, data_range_max=None, max_residual_color=None, rescale_range=None, generateName=False
    ):

    """
    Generate a scatter plot with linear regression, residuals, and a color-coded line of equality.

    Parameters:
    df (DataFrame): The DataFrame containing the data.
    x_name (str): The name of the x-axis variable.
    y_name (str): The name of the y-axis variable.
    buffer (int, optional): Buffer as a percentage of data range for plot margins. Default is 5.
    data_range_max (float, optional): Maximum value for x and y axes. Default is None (auto-calculated).
    max_residual_color (float, optional): Maximum residual value for color normalization. Default is None (auto-calculated).
    rescale_range (tuple, optional): Rescale both x and y to the specified range. Default is None (no rescaling).
    save_png (str, optional): File path to save the plot as a PNG image. Default is None (no saving).
    date_source (str, optional): Date source identifier for the filename. Default is None.

    Returns:
    plt: Matplotlib figure for the generated plot.
    """

    # Extract x and y values from the DataFrame
    x = df[x_name].values
    y = df[y_name].values

    # Rescale x and y if rescale_range is provided
    if rescale_range:
        x_min, x_max = rescale_range
        x = (x - min(x)) / (max(x) - min(x)) * (x_max - x_min) + x_min
        y = (y - min(y)) / (max(y) - min(y)) * (x_max - x_min) + x_min

    # Calculate R2 score
    r2 = r2_score(x, y)
    print(f"R2 Score: {r2}")

    # Calculate residuals in relation to the 45-degree line
    residuals_45 = y - x.flatten()

    # Calculate the data range with a buffer
    if data_range_max:
        data_min = 0
        data_max = data_range_max
    else:
        data_min = min(min(x), min(y))
        data_max = max(max(x), max(y))
    buffer_value = (data_max - data_min) * (buffer / 100)

    # Create a square plot with the same range for both axes
    plt.figure()
    colormap = 'bwr'  # Choose a colormap
    cmap = plt.get_cmap(colormap)
    plt.rcParams['font.family'] = 'DejaVu Sans'

    # Shift the midpoint of the colormap to zero
    if max_residual_color is None:
        max_residual_color = max(abs(residuals_45))
    norm = plt.Normalize(-max_residual_color, max_residual_color)

    colors = np.array(cmap(norm(residuals_45)), dtype=object)

    # Darken the edge color by making it 90% darker than the fill color
    edge_colors = [tuple(0.9 * np.array(c)) for c in colors]

    # Add a contour to scatter points with the same color as the point fill
    scatter = plt.scatter(x, y, c=colors, label='True values', edgecolors=edge_colors, linewidths=2, zorder=3)

    # Plot the line of equality (x == y)
    combined_line = plt.plot([data_min - buffer_value, data_max + buffer_value], [data_min - buffer_value, data_max + buffer_value],
             color='black', linewidth=1, zorder=5)

    # Calculate and plot residuals in relation to the line of equality
    for i in range(len(x)):
        plt.plot([x[i], x[i]], [y[i], x[i]], color='gray', linestyle='--', linewidth=0.5, zorder=1)

    # Plot the linear regression line
    m, b = np.polyfit(x, y, 1)
    regression_line = plt.plot(x, m * x + b, color='grey', linestyle='dotted', linewidth=1, label='Linear Regression line', zorder=4)

    # Calculate the R2 score text position
    text_x = data_min + 0.01 * (data_max - data_min)
    text_y = data_max - 0.01 * (data_max - data_min)

    # Annotate the plot with the R2 score
    plt.text(text_x, text_y, f'$R^2$ Score: {r2:.2f}', fontsize=8, color='black')

    # Add colorbar for residuals (smaller and within the plot)
    sm = plt.cm.ScalarMappable(cmap=colormap, norm=norm)
    sm.set_array([])
    cbar = plt.colorbar(sm, ax=plt.gca(), shrink=0.2, aspect=15, pad=0.03)
    cbar.set_label('Residuals (line of Equality)', fontsize=8)

    # Create separate legend handles and labels
    legend_handles = [scatter, regression_line[0], combined_line[0]]
    legend_labels = ['True values', 'Linear Regression line', 'Line of Equality']

    # Create the combined legend
    combined_legend = plt.legend(handles=legend_handles, labels=legend_labels, loc='lower right', fontsize=8)

    # Set the same limits for both x and y axes with a buffer
    plt.xlim(data_min - buffer_value, data_max + buffer_value)
    plt.ylim(data_min - buffer_value, data_max + buffer_value)

    plt.gca().add_artist(combined_legend)  # Add the combined legend to the plot

    plt.title('Linear Regression Visualization with Residuals (line of Equality)')
    plt.xlabel(" ".join(x_name.split("+"))[0].capitalize() + " ".join(x_name.split("+"))[1:])
    plt.ylabel(" ".join(y_name.split("+"))[0].capitalize() + " ".join(y_name.split("+"))[1:])

    # Add very light grey background grid lines
    plt.grid(True, color='lightgrey', linestyle='--', alpha=0.6, zorder=0)


    if generateName:
        # Plot name
        plt_name = "linearRegr_" + "".join(word.capitalize() for word in x_name.split("+")) + "_vs_" + "".join(
            word.capitalize() for word in y_name.split("+"))
        return plt, plt_name
    else:
        return plt