Spaces:
Sleeping
Sleeping
File size: 28,561 Bytes
debd61e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
#speckle utils
import json
import pandas as pd
import numpy as np
import specklepy
from specklepy.api.client import SpeckleClient
from specklepy.api.credentials import get_default_account, get_local_accounts
from specklepy.transports.server import ServerTransport
from specklepy.api import operations
from specklepy.objects.geometry import Polyline, Point, Mesh
from specklepy.api.wrapper import StreamWrapper
try:
import openai
except:
pass
import requests
from datetime import datetime
import copy
# HELP FUNCTION ===============================================================
def helper():
"""
Prints out the help message for this module.
"""
print("This module contains a set of utility functions for speckle streams.")
print("______________________________________________________________________")
print("It requires the specklepy package to be installed -> !pip install specklepy")
print("the following functions are available:")
print("getSpeckleStream(stream_id, branch_name, client)")
print("getSpeckleGlobals(stream_id, client)")
print("get_dataframe(objects_raw, return_original_df)")
print("updateStreamAnalysis(stream_id, new_data, branch_name, geometryGroupPath, match_by_id, openai_key, return_original)")
print("there are some more function available not documented fully yet, including updating a notion database")
print("______________________________________________________________________")
print("for detailed help call >>> help(speckle_utils.function_name) <<< ")
print("______________________________________________________________________")
print("standard usage:")
print("______________________________________________________________________")
print("retreiving data")
print("1. import speckle_utils & speckle related libaries from specklepy")
print("2. create a speckle client -> client = SpeckleClient(host='https://speckle.xyz/')" )
print(" client.authenticate_with_token(token='your_token_here')")
print("3. get a speckle stream -> stream = speckle_utils.getSpeckleStream(stream_id, branch_name, client)")
print("4. get the stream data -> data = stream['pth']['to']['data']")
print("5. transform data to dataframe -> df = speckle_utils.get_dataframe(data, return_original_df=False)")
print("______________________________________________________________________")
print("updating data")
print("1. call updateStreamAnalysis --> updateStreamAnalysis(new_data, stream_id, branch_name, geometryGroupPath, match_by_id, openai_key, return_original)")
#==============================================================================
def updateSpeckleStream(stream_id,
branch_name,
client,
data_object,
commit_message="Updated the data object",
):
"""
Updates a speckle stream with a new data object.
Args:
stream_id (str): The ID of the speckle stream.
branch_name (str): The name of the branch within the speckle stream.
client (specklepy.api.client.Client): A speckle client.
data_object (dict): The data object to send to the speckle stream.
commit_message (str): The commit message. Defaults to "Updated the data object".
"""
# set stream and branch
branch = client.branch.get(stream_id, branch_name)
# Get transport
transport = ServerTransport(client=client, stream_id=stream_id)
# Send the data object to the speckle stream
object_id = operations.send(data_object, [transport])
# Create a new commit with the new object
commit_id = client.commit.create(
stream_id,
object_id= object_id,
message=commit_message,
branch_name=branch_name,
)
return commit_id
def getSpeckleStream(stream_id,
branch_name,
client,
commit_id=""
):
"""
Retrieves data from a specific branch of a speckle stream.
Args:
stream_id (str): The ID of the speckle stream.
branch_name (str): The name of the branch within the speckle stream.
client (specklepy.api.client.Client, optional): A speckle client. Defaults to a global `client`.
commit_id (str): id of a commit, if nothing is specified, the latest commit will be fetched
Returns:
dict: The speckle stream data received from the specified branch.
This function retrieves the last commit from a specific branch of a speckle stream.
It uses the provided speckle client to get the branch and commit information, and then
retrieves the speckle stream data associated with the last commit.
It prints out the branch details and the creation dates of the last three commits for debugging purposes.
"""
print("updated A")
# set stream and branch
try:
branch = client.branch.get(stream_id, branch_name, 3)
print(branch)
except:
branch = client.branch.get(stream_id, branch_name, 1)
print(branch)
print("last three commits:")
[print(ite.createdAt) for ite in branch.commits.items]
if commit_id == "":
latest_commit = branch.commits.items[0]
choosen_commit_id = latest_commit.id
commit = client.commit.get(stream_id, choosen_commit_id)
print("latest commit ", branch.commits.items[0].createdAt, " was choosen")
elif type(commit_id) == type("s"): # string, commit uuid
choosen_commit_id = commit_id
commit = client.commit.get(stream_id, choosen_commit_id)
print("provided commit ", choosen_commit_id, " was choosen")
elif type(commit_id) == type(1): #int
latest_commit = branch.commits.items[commit_id]
choosen_commit_id = latest_commit.id
commit = client.commit.get(stream_id, choosen_commit_id)
print(commit)
print(commit.referencedObject)
# get transport
transport = ServerTransport(client=client, stream_id=stream_id)
#speckle stream
res = operations.receive(commit.referencedObject, transport)
return res
def getSpeckleGlobals(stream_id, client):
"""
Retrieves global analysis information from the "globals" branch of a speckle stream.
Args:
stream_id (str): The ID of the speckle stream.
client (specklepy.api.client.Client, optional): A speckle client. Defaults to a global `client`.
Returns:
analysisInfo (dict or None): The analysis information retrieved from globals. None if no globals found.
analysisGroups (list or None): The analysis groups retrieved from globals. None if no globals found.
This function attempts to retrieve and parse the analysis information from the "globals"
branch of the specified speckle stream. It accesses and parses the "analysisInfo" and "analysisGroups"
global attributes, extracts analysis names and UUIDs.
If no globals are found in the speckle stream, it returns None for both analysisInfo and analysisGroups.
"""
# get the latest commit
try:
# speckle stream globals
branchGlob = client.branch.get(stream_id, "globals")
latest_commit_Glob = branchGlob.commits.items[0]
transport = ServerTransport(client=client, stream_id=stream_id)
globs = operations.receive(latest_commit_Glob.referencedObject, transport)
# access and parse globals
#analysisInfo = json.loads(globs["analysisInfo"]["@{0;0;0;0}"][0].replace("'", '"'))
#analysisGroups = [json.loads(gr.replace("'", '"')) for gr in globs["analysisGroups"]["@{0}"]]
def get_error_context(e, context=100):
start = max(0, e.pos - context)
end = e.pos + context
error_line = e.doc[start:end]
pointer_line = ' ' * (e.pos - start - 1) + '^'
return error_line, pointer_line
try:
analysisInfo = json.loads(globs["analysisInfo"]["@{0;0;0;0}"][0].replace("'", '"').replace("None", "null"))
except json.JSONDecodeError as e:
print(f"Error decoding analysisInfo: {e}")
error_line, pointer_line = get_error_context(e)
print("Error position and surrounding text:")
print(error_line)
print(pointer_line)
analysisInfo = None
try:
analysisGroups = [json.loads(gr.replace("'", '"').replace("None", "null")) for gr in globs["analysisGroups"]["@{0}"]]
except json.JSONDecodeError as e:
print(f"Error decoding analysisGroups: {e}")
error_line, pointer_line = get_error_context(e)
print("Error position and surrounding text:")
print(error_line)
print(pointer_line)
analysisGroups = None
# extract analysis names
analysis_names = []
analysis_uuid = []
[(analysis_names.append(key.split("++")[0]),analysis_uuid.append(key.split("++")[1]) ) for key in analysisInfo.keys()]
# print extracted results
print("there are global dictionaries with additional information for each analysis")
print("<analysisGroups> -> ", [list(curgrp.keys()) for curgrp in analysisGroups])
print("<analysis_names> -> ", analysis_names)
print("<analysis_uuid> -> ", analysis_uuid)
except Exception as e: # catch exception as 'e'
analysisInfo = None
analysisGroups = None
print("No GlOBALS FOUND")
print(f"Error: {e}") # print error description
return analysisInfo, analysisGroups
#function to extract non geometry data from speckle
def get_dataframe(objects_raw, return_original_df=False):
"""
Creates a pandas DataFrame from a list of raw Speckle objects.
Args:
objects_raw (list): List of raw Speckle objects.
return_original_df (bool, optional): If True, the function also returns the original DataFrame before any conversion to numeric. Defaults to False.
Returns:
pd.DataFrame or tuple: If return_original_df is False, returns a DataFrame where all numeric columns have been converted to their respective types,
and non-numeric columns are left unchanged.
If return_original_df is True, returns a tuple where the first item is the converted DataFrame,
and the second item is the original DataFrame before conversion.
This function iterates over the raw Speckle objects, creating a dictionary for each object that excludes the '@Geometry' attribute.
These dictionaries are then used to create a pandas DataFrame.
The function attempts to convert each column to a numeric type if possible, and leaves it unchanged if not.
Non-convertible values in numeric columns are replaced with their original values.
"""
# dataFrame
df_data = []
# Iterate over speckle objects
for obj_raw in objects_raw:
obj = obj_raw.__dict__
df_obj = {k: v for k, v in obj.items() if k != '@Geometry'}
df_data.append(df_obj)
# Create DataFrame and GeoDataFrame
df = pd.DataFrame(df_data)
# Convert columns to float or int if possible, preserving non-convertible values <-
df_copy = df.copy()
for col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
df[col].fillna(df_copy[col], inplace=True)
if return_original_df:
return df, df_copy
else:
return df
def updateStreamAnalysis(
client,
new_data,
stream_id,
branch_name,
geometryGroupPath=None,
match_by_id="",
openai_key ="",
return_original = False
):
"""
Updates Stream Analysis by modifying object attributes based on new data.
Args:
new_data (pandas.DataFrame): DataFrame containing new data.
stream_id (str): Stream ID.
branch_name (str): Branch name.
geometry_group_path (list, optional): Path to geometry group. Defaults to ["@Data", "@{0}"].
match_by_id (str, optional): key for column that should be used for matching. If empty, the index is used.
openai_key (str, optional): OpenAI key. If empty no AI commit message is generated Defaults to an empty string.
return_original (bool, optional): Determines whether to return original speckle stream objects. Defaults to False.
Returns:
list: original speckle stream objects as backup if return_original is set to True.
This function retrieves the latest commit from a specified branch, obtains the
necessary geometry objects, and matches new data with existing objects using
an ID mapper. The OpenAI GPT model is optionally used to create a commit summary
message. Changes are sent back to the server and a new commit is created, with
the original objects returned as a backup if return_original is set to True.
The script requires active server connection, necessary permissions, and relies
on Speckle and OpenAI's GPT model libraries.
"""
print("1")
if geometryGroupPath == None:
geometryGroupPath = ["@Speckle", "Geometry"]
branch = client.branch.get(stream_id, branch_name, 2)
latest_commit = branch.commits.items[0]
commitID = latest_commit.id
commit = client.commit.get(stream_id, commitID)
# get objects
transport = ServerTransport(client=client, stream_id=stream_id)
#speckle stream
res = operations.receive(commit.referencedObject, transport)
# get geometry objects (they carry the attributes)
objects_raw = res[geometryGroupPath[0]][geometryGroupPath[1]]
res_new = copy.deepcopy(res)
print("2")
# map ids
id_mapper = {}
if match_by_id != "":
for i, obj in enumerate(objects_raw):
id_mapper[obj[match_by_id]] = i
else:
for i, obj in enumerate(objects_raw):
id_mapper[str(i)] = i
print("3")
# iterate through rows (objects)
for index, row in new_data.iterrows():
#determin target object
if match_by_id != "":
local_id = row[match_by_id]
else:
local_id = index
target_id = id_mapper[local_id]
#iterate through columns (attributes)
for col_name in new_data.columns:
res_new[geometryGroupPath[0]][geometryGroupPath[1]][target_id][col_name] = row[col_name]
print("4")
# ======================== OPEN AI FUN ===========================
"""
try:
try:
answer_summary = gptCommitMessage(objects_raw, new_data,openai_key)
if answer_summary == None:
_, answer_summary = compareStats(get_dataframe(objects_raw),new_data)
except:
_, answer_summary = compareStats(get_dataframe(objects_raw),new_data)
except:
answer_summary = ""
"""
answer_summary = ""
# ================================================================
print("5")
new_objects_raw_speckle_id = operations.send(base=res_new, transports=[transport])
print("6")
# You can now create a commit on your stream with this object
commit_id = client.commit.create(
stream_id=stream_id,
branch_name=branch_name,
object_id=new_objects_raw_speckle_id,
message="Updated item in colab -" + answer_summary,
)
print("7")
print("Commit created!")
if return_original:
return objects_raw #as back-up
def custom_describe(df):
# Convert columns to numeric if possible
df = df.apply(lambda x: pd.to_numeric(x, errors='ignore'))
# Initial describe with 'include = all'
desc = df.describe(include='all')
# Desired statistics
desired_stats = ['count', 'unique', 'mean', 'min', 'max']
# Filter for desired statistics
result = desc.loc[desired_stats, :].copy()
return result
def compareStats(df_before, df_after):
"""
Compares the descriptive statistics of two pandas DataFrames before and after some operations.
Args:
df_before (pd.DataFrame): DataFrame representing the state of data before operations.
df_after (pd.DataFrame): DataFrame representing the state of data after operations.
Returns:
The CSV string includes column name, intervention type, and before and after statistics for each column.
The summary string provides a count of updated and new columns.
This function compares the descriptive statistics of two DataFrames: 'df_before' and 'df_after'.
It checks the columns in both DataFrames and categorizes them as either 'updated' or 'new'.
The 'updated' columns exist in both DataFrames while the 'new' columns exist only in 'df_after'.
For 'updated' columns, it compares the statistics before and after and notes the differences.
For 'new' columns, it lists the 'after' statistics and marks the 'before' statistics as 'NA'.
The function provides a summary with the number of updated and new columns,
and a detailed account in CSV format of changes in column statistics.
"""
desc_before = custom_describe(df_before)
desc_after = custom_describe(df_after)
# Get union of all columns
all_columns = set(desc_before.columns).union(set(desc_after.columns))
# Track number of updated and new columns
updated_cols = 0
new_cols = 0
# Prepare DataFrame output
output_data = []
for column in all_columns:
row_data = {'column': column}
stat_diff = False # Track if there's a difference in stats for a column
# Check if column exists in both dataframes
if column in desc_before.columns and column in desc_after.columns:
updated_cols += 1
row_data['interventionType'] = 'updated'
for stat in desc_before.index:
before_val = round(desc_before.loc[stat, column], 1) if pd.api.types.is_number(desc_before.loc[stat, column]) else desc_before.loc[stat, column]
after_val = round(desc_after.loc[stat, column], 1) if pd.api.types.is_number(desc_after.loc[stat, column]) else desc_after.loc[stat, column]
if before_val != after_val:
stat_diff = True
row_data[stat+'_before'] = before_val
row_data[stat+'_after'] = after_val
elif column in desc_after.columns:
new_cols += 1
stat_diff = True
row_data['interventionType'] = 'new'
for stat in desc_after.index:
row_data[stat+'_before'] = 'NA'
after_val = round(desc_after.loc[stat, column], 1) if pd.api.types.is_number(desc_after.loc[stat, column]) else desc_after.loc[stat, column]
row_data[stat+'_after'] = after_val
# Only add to output_data if there's actually a difference in the descriptive stats between "before" and "after".
if stat_diff:
output_data.append(row_data)
output_df = pd.DataFrame(output_data)
csv_output = output_df.to_csv(index=False)
print (output_df)
# Add summary to beginning of output
summary = f"Summary:\n Number of updated columns: {updated_cols}\n Number of new columns: {new_cols}\n\n"
csv_output = summary + csv_output
return csv_output, summary
# Function to call ChatGPT API
def ask_chatgpt(prompt, model="gpt-3.5-turbo", max_tokens=300, n=1, stop=None, temperature=0.3):
import openai
response = openai.ChatCompletion.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpfull assistant,."},
{"role": "user", "content": prompt}
],
max_tokens=max_tokens,
n=n,
stop=stop,
temperature=temperature,
)
return response.choices[0].message['content']
def gptCommitMessage(objects_raw, new_data,openai_key):
# the idea is to automatically create commit messages. Commits coming through this channel are all
# about updating or adding a dataTable. So we can compare the descriptive stats of a before and after
# data frame
#try:
try:
import openai
openai.api_key = openai_key
except NameError as ne:
if str(ne) == "name 'openai' is not defined":
print("No auto commit message: openai module not imported. Please import the module before setting the API key.")
elif str(ne) == "name 'openai_key' is not defined":
print("No auto commit message: openai_key is not defined. Please define the variable before setting the API key.")
else:
raise ne
report, summary = compareStats(get_dataframe(objects_raw),new_data)
# prompt
prompt = f"""Given the following changes in my tabular data structure, generate a
precise and informative commit message. The changes involve updating or adding
attribute keys and values. The provided summary statistics detail the changes in
the data from 'before' to 'after'.
The CSV format below demonstrates the structure of the summary:
Summary:
Number of updated columns: 2
Number of new columns: 1
column,interventionType,count_before,count_after,unique_before,unique_after,mean_before,mean_after,min_before,min_after,max_before,max_after
A,updated,800,800,2,3,,nan,nan,nan,nan,nan
B,updated,800,800,3,3,,nan,nan,nan,nan,nan
C,new,NA,800,NA,4,NA,nan,NA,nan,NA,nan
For the commit message, your focus should be on changes in the data structure, not the interpretation of the content. Be precise, state the facts, and highlight significant differences or trends in the statistics, such as shifts in mean values or an increase in unique entries.
Based on the above guidance, draft a commit message using the following actual summary statistics:
{report}
Your commit message should follow this structure:
1. Brief description of the overall changes.
2. Significant changes in summary statistics (count, unique, mean, min, max).
3. Conclusion, summarizing the most important findings with the strucutre:
# changed columns: , comment: ,
# added Columns: , comment: ,
# Chaged statistic: , coment: ,
Mark the beginning of the conclusion with ">>>" and ensure to emphasize hard facts and significant findings.
"""
try:
answer = ask_chatgpt(prompt)
answer_summery = answer.split(">>>")[1]
if answer == None:
answer_summery = summary
except:
answer_summery = summary
print(answer_summery)
return answer_summery
def specklePolyline_to_BokehPatches(speckle_objs, pth_to_geo="curves", id_key="ids"):
"""
Takes a list of speckle objects, extracts the polyline geometry at the specified path, and returns a dataframe of x and y coordinates for each polyline.
This format is compatible with the Bokeh Patches object for plotting.
Args:
speckle_objs (list): A list of Speckle Objects
pth_to_geo (str): Path to the geometry in the Speckle Object
id_key (str): The key to use for the uuid in the dataframe. Defaults to "uuid"
Returns:
pd.DataFrame: A Pandas DataFrame with columns "uuid", "patches_x" and "patches_y"
"""
patchesDict = {"uuid":[], "patches_x":[], "patches_y":[]}
for obj in speckle_objs:
obj_geo = obj[pth_to_geo]
obj_pts = Polyline.as_points(obj_geo)
coorX = []
coorY = []
for pt in obj_pts:
coorX.append(pt.x)
coorY.append(pt.y)
patchesDict["patches_x"].append(coorX)
patchesDict["patches_y"].append(coorY)
patchesDict["uuid"].append(obj[id_key])
return pd.DataFrame(patchesDict)
def rebuildAnalysisInfoDict(analysisInfo):
"""rebuild the analysisInfo dictionary to remove the ++ from the keys
Args:
analysisInfo (list): a list containing the analysisInfo dictionary
Returns:
dict: a dictionary containing the analysisInfo dictionary with keys without the ++
"""
analysisInfoDict = {}
for curKey in analysisInfo[0]:
newkey = curKey.split("++")[0]
analysisInfoDict[newkey] = analysisInfo[0][curKey]
return analysisInfoDict
def specklePolyline2Patches(speckle_objs, pth_to_geo="curves", id_key=None):
"""
Converts Speckle objects' polyline information into a format suitable for Bokeh patches.
Args:
speckle_objs (list): A list of Speckle objects.
pth_to_geo (str, optional): The path to the polyline geometric information in the Speckle objects. Defaults to "curves".
id_key (str, optional): The key for object identification. Defaults to "uuid".
Returns:
DataFrame: A pandas DataFrame with three columns - "uuid", "patches_x", and "patches_y". Each row corresponds to a Speckle object.
"uuid" column contains the object's identifier.
"patches_x" and "patches_y" columns contain lists of x and y coordinates of the polyline points respectively.
This function iterates over the given Speckle objects, retrieves the polyline geometric information and the object's id from each Speckle object,
and formats this information into a format suitable for Bokeh or matplotlib patches. The formatted information is stored in a dictionary with three lists
corresponding to the "uuid", "patches_x", and "patches_y", and this dictionary is then converted into a pandas DataFrame.
"""
patchesDict = {"patches_x":[], "patches_y":[]}
if id_key != None:
patchesDict[id_key] = []
for obj in speckle_objs:
obj_geo = obj[pth_to_geo]
coorX = []
coorY = []
if isinstance(obj_geo, Mesh):
# For meshes, we'll just use the vertices for now
for pt in obj_geo.vertices:
coorX.append(pt.x)
coorY.append(pt.y)
else:
# For polylines, we'll use the existing logic
obj_pts = Polyline.as_points(obj_geo)
for pt in obj_pts:
coorX.append(pt.x)
coorY.append(pt.y)
patchesDict["patches_x"].append(coorX)
patchesDict["patches_y"].append(coorY)
if id_key != None:
patchesDict[id_key].append(obj[id_key])
return pd.DataFrame(patchesDict)
#================= NOTION INTEGRATION ============================
headers = {
"Notion-Version": "2022-06-28",
"Content-Type": "application/json"
}
def get_page_id(token, database_id, name):
headers['Authorization'] = "Bearer " + token
# Send a POST request to the Notion API
response = requests.post(f"https://api.notion.com/v1/databases/{database_id}/query", headers=headers)
# Load the response data
data = json.loads(response.text)
# Check each page in the results
for page in data['results']:
# If the name matches, return the ID
if page['properties']['name']['title'][0]['text']['content'] == name:
return page['id']
# If no match was found, return None
return None
def add_or_update_page(token, database_id, name, type, time_updated, comment, speckle_link):
# Format time_updated as a string 'YYYY-MM-DD'
date_string = time_updated.strftime('%Y-%m-%d')
# Construct the data payload
data = {
'parent': {'database_id': database_id},
'properties': {
'name': {'title': [{'text': {'content': name}}]},
'type': {'rich_text': [{'text': {'content': type}}]},
'time_updated': {'date': {'start': date_string}},
'comment': {'rich_text': [{'text': {'content': comment}}]},
'speckle_link': {'rich_text': [{'text': {'content': speckle_link}}]}
}
}
# Check if a page with this name already exists
page_id = get_page_id(token, database_id, name)
headers['Authorization'] = "Bearer " + token
if page_id:
# If the page exists, send a PATCH request to update it
response = requests.patch(f"https://api.notion.com/v1/pages/{page_id}", headers=headers, data=json.dumps(data))
else:
# If the page doesn't exist, send a POST request to create it
response = requests.post("https://api.notion.com/v1/pages", headers=headers, data=json.dumps(data))
print(response.text)
# Use the function
#add_or_update_page('your_token', 'your_database_id', 'New Title', 'New Type', datetime.now(), 'This is a comment', 'https://your-link.com')
|