chunk-embed / app.py
plaggy's picture
req added, changed spacy to recursive
7ddbf9d
raw
history blame
7.77 kB
import asyncio
import gradio as gr
import numpy as np
import time
import json
import os
import tempfile
import requests
import logging
from aiohttp import ClientSession
from langchain.text_splitter import RecursiveCharacterTextSplitter
from datasets import Dataset, load_dataset
from tqdm import tqdm
from tqdm.asyncio import tqdm_asyncio
HF_TOKEN = os.getenv("HF_TOKEN")
SEMAPHORE_BOUND = os.getenv("SEMAPHORE_BOUND", "5")
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class Chunker:
def __init__(self, strategy, split_seq=".", chunk_len=512):
self.split_seq = split_seq
self.chunk_len = chunk_len
if strategy == "recursive":
self.split = RecursiveCharacterTextSplitter().split_text
if strategy == "sequence":
self.split = self.seq_splitter
if strategy == "constant":
self.split = self.const_splitter
def seq_splitter(self, text):
return text.split(self.split_seq)
def const_splitter(self, text):
return [
text[i * self.chunk_len:(i + 1) * self.chunk_len]
for i in range(int(np.ceil(len(text) / self.chunk_len)))
]
def generator(input_ds, input_text_col, chunker):
for i in tqdm(range(len(input_ds))):
chunks = chunker.split(input_ds[i][input_text_col])
for chunk in chunks:
if chunk:
yield {input_text_col: chunk}
def chunk(input_ds, input_splits, input_text_col, output_ds, strategy, split_seq, chunk_len, private):
input_splits = [spl.strip() for spl in input_splits.split(",") if spl]
input_ds = load_dataset(input_ds, split="+".join(input_splits))
chunker = Chunker(strategy, split_seq, chunk_len)
gen_kwargs = {
"input_ds": input_ds,
"input_text_col": input_text_col,
"chunker": chunker
}
dataset = Dataset.from_generator(generator, gen_kwargs=gen_kwargs)
dataset.push_to_hub(
output_ds,
private=private,
token=HF_TOKEN
)
logger.info("Done chunking")
async def embed_sent(sentence, embed_in_text_col, semaphore, tei_url, tmp_file):
async with semaphore:
payload = {
"inputs": sentence,
"truncate": True
}
async with ClientSession(
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {HF_TOKEN}"
}
) as session:
async with session.post(tei_url, json=payload) as resp:
if resp.status != 200:
raise RuntimeError(await resp.text())
result = await resp.json()
tmp_file.write(
json.dumps({"vector": result[0], embed_in_text_col: sentence}) + "\n"
)
async def embed_ds(input_ds, tei_url, embed_in_text_col, temp_file):
semaphore = asyncio.BoundedSemaphore(int(SEMAPHORE_BOUND))
jobs = [
asyncio.create_task(embed_sent(row[embed_in_text_col], embed_in_text_col, semaphore, tei_url, temp_file))
for row in input_ds if row[embed_in_text_col].strip()
]
logger.info(f"num chunks to embed: {len(jobs)}")
tic = time.time()
await tqdm_asyncio.gather(*jobs)
logger.info(f"embed time: {time.time() - tic}")
def wake_up_endpoint(url):
n_loop = 0
while requests.get(
url=url,
headers={"Authorization": f"Bearer {HF_TOKEN}"}
).status_code != 200:
time.sleep(2)
n_loop += 1
if n_loop > 30:
raise TimeoutError("TEI endpoint is unavailable")
logger.info("TEI endpoint is up")
def run_embed(input_ds, input_splits, embed_in_text_col, output_ds, tei_url, private):
wake_up_endpoint(tei_url)
input_splits = [spl.strip() for spl in input_splits.split(",") if spl]
input_ds = load_dataset(input_ds, split="+".join(input_splits))
with tempfile.NamedTemporaryFile(mode="a", suffix=".jsonl") as temp_file:
asyncio.run(embed_ds(input_ds, tei_url, embed_in_text_col, temp_file))
dataset = Dataset.from_json(temp_file.name)
dataset.push_to_hub(
output_ds,
private=private,
token=HF_TOKEN
)
logger.info("Done embedding")
def change_dropdown(choice):
if choice == "recursive" or choice == "sequence":
return [
gr.Textbox(visible=True),
gr.Textbox(visible=False)
]
else:
return [
gr.Textbox(visible=False),
gr.Textbox(visible=True)
]
with gr.Blocks() as demo:
gr.Markdown(
"""
## Chunk your dataset before embedding
"""
)
with gr.Tab("Chunk"):
chunk_in_ds = gr.Textbox(lines=1, label="Input dataset name")
with gr.Row():
chunk_in_splits = gr.Textbox(lines=1, label="Input dataset splits", placeholder="train, test")
chunk_in_text_col = gr.Textbox(lines=1, label="Input text column name", placeholder="text")
with gr.Row():
chunk_out_ds = gr.Textbox(lines=1, label="Output dataset name", scale=6)
chunk_private = gr.Checkbox(label="Make chunked dataset private")
with gr.Row():
dropdown = gr.Dropdown(
["recursive", "sequence", "constant"], label="Chunking strategy",
info="'recursive' uses a Langchain recursive tokenizer, 'sequence' splits texts by a chosen sequence, "
"'constant' makes chunks of the constant size",
scale=2
)
split_seq = gr.Textbox(
lines=1,
interactive=True,
visible=False,
label="Sequence",
info="A text sequence to split on",
placeholder="\n\n"
)
chunk_len = gr.Textbox(
lines=1,
interactive=True,
visible=False,
label="Length",
info="The length of chunks to split into",
placeholder="512"
)
dropdown.change(fn=change_dropdown, inputs=dropdown, outputs=[split_seq, chunk_len])
with gr.Row():
gr.ClearButton(
components=[
chunk_in_ds, chunk_in_splits, chunk_in_text_col, chunk_out_ds,
dropdown, split_seq, chunk_len, chunk_private
]
)
chunk_btn = gr.Button("Chunk")
chunk_btn.click(
fn=chunk,
inputs=[chunk_in_ds, chunk_in_splits, chunk_in_text_col, chunk_out_ds,
dropdown, split_seq, chunk_len, chunk_private]
)
with gr.Tab("Embed"):
embed_in_ds = gr.Textbox(lines=1, label="Input dataset name")
with gr.Row():
embed_in_splits = gr.Textbox(lines=1, label="Input dataset splits", placeholder="train, test")
embed_in_text_col = gr.Textbox(lines=1, label="Input text column name", placeholder="text")
with gr.Row():
embed_out_ds = gr.Textbox(lines=1, label="Output dataset name", scale=6)
embed_private = gr.Checkbox(label="Make embedded dataset private")
tei_url = gr.Textbox(lines=1, label="TEI endpoint url")
with gr.Row():
gr.ClearButton(
components=[embed_in_ds, embed_in_splits, embed_in_text_col, embed_out_ds, tei_url, embed_private]
)
embed_btn = gr.Button("Run embed")
embed_btn.click(
fn=run_embed,
inputs=[embed_in_ds, embed_in_splits, embed_in_text_col, embed_out_ds, tei_url, embed_private]
)
demo.launch(debug=True)