Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import Idefics3ForConditionalGeneration, AutoProcessor | |
import torch | |
from PIL import Image | |
from datetime import datetime | |
import numpy as np | |
import os | |
DESCRIPTION = """ | |
# SmolVLM-trl-sft-ChartQA Demo | |
This is a demo Space for a fine-tuned version of [SmolVLM](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) trained using [ChatQA dataset](https://huggingface.co/datasets/HuggingFaceM4/ChartQA). | |
The corresponding model is located [here](https://huggingface.co/sergiopaniego/smolvlm-instruct-trl-sft-ChartQA). | |
""" | |
model_id = "HuggingFaceTB/SmolVLM-Instruct" | |
model = Idefics3ForConditionalGeneration.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
#_attn_implementation="flash_attention_2", | |
) | |
processor = AutoProcessor.from_pretrained(model_id) | |
adapter_path = "sergiopaniego/smolvlm-instruct-trl-sft-ChartQA" | |
model.load_adapter(adapter_path) | |
def array_to_image_path(image_array): | |
if image_array is None: | |
raise ValueError("No image provided. Please upload an image before submitting.") | |
# Convert numpy array to PIL Image | |
img = Image.fromarray(np.uint8(image_array)) | |
# Generate a unique filename using timestamp | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
filename = f"image_{timestamp}.png" | |
# Save the image | |
img.save(filename) | |
# Get the full path of the saved image | |
full_path = os.path.abspath(filename) | |
return full_path | |
def run_example(image, text_input=None): | |
image_path = array_to_image_path(image) | |
image = Image.fromarray(image).convert("RGB") | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"text": None, | |
}, | |
{ | |
"text": text_input, | |
"type": "text" | |
}, | |
], | |
} | |
] | |
# Preparation for inference | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs = [] | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
image_inputs.append([image]) | |
inputs = processor( | |
text=text, | |
images=image_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cuda") | |
# Inference: Generation of the output | |
generated_ids = model.generate(**inputs, max_new_tokens=1024) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return output_text[0] | |
css = """ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab(label="SmolVLM-trl-sft-ChartQA Input"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Picture") | |
text_input = gr.Textbox(label="Question") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output Text") | |
submit_btn.click(run_example, [input_img, text_input], [output_text]) | |
demo.queue(api_open=False) | |
demo.launch(debug=True) |