Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import pipeline, GPTJForCausalLM, AutoModelForCausalLM | |
from peft import LoraConfig, get_peft_model, PeftModel, PeftConfig | |
# config = PeftConfig.from_pretrained("hackathon-somos-nlp-2023/bertin-gpt-j-6b-ner-es") | |
# model = AutoModelForCausalLM.from_pretrained("hackathon-somos-nlp-2023/bertin-gpt-j-6b-ner-es", return_dict=True, load_in_8bit=True, device_map='auto') | |
# # load tokenizer | |
# tokenizer = AutoTokenizer.from_pretrained("hackathon-somos-nlp-2023/bertin-gpt-j-6b-ner-es") | |
# # Load the Lora model | |
# model = PeftModel.from_pretrained(model, "hackathon-somos-nlp-2023/bertin-gpt-j-6b-ner-es") | |
# # load fp 16 model | |
model = AutoModelForCausalLM.from_pretrained("bertin-project/bertin-gpt-j-6B", revision="half", load_in_8bit=True, device_map='auto') | |
config = AutoConfig.from_pretrained("bertin-project/bertin-gpt-j-6B") | |
# create pipeline | |
pipe = pipeline("text-generation", model=model, config=config, tokenizer=tokenizer, device=0,) | |
def predict(text): | |
return pipe(f"text: {text}, entities:")["generated_text"] | |
iface = gr.Interface( | |
fn=predict, | |
inputs='text', | |
outputs='text', | |
examples=[["Yo hoy voy a hablar de mujeres en el mundo del arte, porque me ha leΓdo un libro fantΓ‘stico que se llama Historia del arte sin hombres, de Katie Hesel."]] | |
) | |
iface.launch() | |