images => video
Browse files
app.py
CHANGED
@@ -13,8 +13,6 @@
|
|
13 |
# - x: 128 to 512
|
14 |
# - y: 128 to 512
|
15 |
# - physical fields: 2 to 8 (density, pressure, energy, velocity…)
|
16 |
-
from functools import lru_cache
|
17 |
-
|
18 |
import gradio as gr
|
19 |
import h5py
|
20 |
import numpy as np
|
@@ -22,8 +20,16 @@ from fsspec import url_to_fs
|
|
22 |
from matplotlib import cm
|
23 |
from PIL import Image
|
24 |
import av
|
25 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
27 |
|
28 |
repo_id = "lhoestq/turbulent_radiative_layer_tcool_demo"
|
29 |
set_path = f"hf://datasets/{repo_id}/**/*.hdf5"
|
@@ -31,103 +37,127 @@ fs, _ = url_to_fs(set_path)
|
|
31 |
paths = fs.glob(set_path)
|
32 |
files = {path: h5py.File(fs.open(path, "rb", cache_type="none"), "r") for path in paths}
|
33 |
|
|
|
34 |
def get_scalar_fields(path: str) -> list[str]:
|
35 |
# TODO: support t1_fields (vector) and t2_fields (tensor)
|
36 |
return list(files[path]["t0_fields"].keys())
|
37 |
|
|
|
38 |
def get_trajectories(path: str, field: str) -> list[int]:
|
39 |
# The first dimension is the trajectory (8 to 256)
|
40 |
return list(range(len(files[path]["t0_fields"][field])))
|
41 |
|
42 |
-
@lru_cache(maxsize=4)
|
43 |
-
def get_images(path: str, scalar_field: str, trajectory: int) -> list[Image.Image]:
|
44 |
-
# The data is of shape (n_trajectories, n_time_steps, x, y)
|
45 |
-
out = files[path]["t0_fields"][scalar_field][trajectory]
|
46 |
-
out = np.log(out) # not sure why
|
47 |
-
out = (out - out.min()) / (out.max() - out.min())
|
48 |
-
out = np.uint8(cm.RdBu_r(out) * 255)
|
49 |
-
return [Image.fromarray(img) for img in out]
|
50 |
|
51 |
fps = 25
|
52 |
-
# @lru_cache(maxsize=4)
|
53 |
-
def get_video(path: str, scalar_field: str, trajectory: int) -> str:
|
54 |
-
video_filename = 'output_vid.webm'
|
55 |
|
|
|
|
|
|
|
|
|
56 |
out = files[path]["t0_fields"][scalar_field][trajectory]
|
57 |
-
out = np.log(out)
|
58 |
out = (out - out.min()) / (out.max() - out.min())
|
59 |
-
out = np.uint8(cm.
|
60 |
-
|
61 |
-
output = av.open(video_filename,
|
62 |
-
stream = output.add_stream(
|
63 |
-
|
64 |
stream.width = width
|
65 |
stream.height = height
|
66 |
-
stream.pix_fmt =
|
67 |
-
# stream.options = {'crf': '17'}
|
68 |
|
69 |
for img in out:
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
74 |
|
75 |
# Flush the encoder and close the "in memory" file:
|
76 |
packet = stream.encode(None)
|
77 |
output.mux(packet)
|
78 |
output.close()
|
79 |
-
return video_filename
|
80 |
-
|
81 |
-
# subprocess.run(["ffmpeg", "-y", "-framerate", "25", "-i", os.path.join(output_dir, "density_%d.png"), "-c:v", "libvpx-vp9", "-pix_fmt", "yuva420p", os.path.join(output_dir, "density.webm")])
|
82 |
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
with gr.Blocks() as demo:
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
gr.Markdown(f"Showing files at `{set_path}`")
|
92 |
with gr.Row():
|
93 |
-
files_dropdown = gr.Dropdown(
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
def _update_file(path: str):
|
102 |
scalar_fields = get_scalar_fields(path)
|
103 |
trajectories = get_trajectories(path, scalar_fields[0])
|
104 |
-
images = get_images(path, scalar_fields[0], trajectories[0])
|
105 |
vid = get_video(path, scalar_fields[0], trajectories[0])
|
106 |
yield {
|
107 |
-
scalar_fields_dropdown: gr.Dropdown(
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
111 |
}
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
115 |
def _update_scalar_field(path: str, scalar_field: str):
|
116 |
trajectories = get_trajectories(path, scalar_field)
|
117 |
-
images = get_images(path, scalar_field, trajectories[0])
|
118 |
vid = get_video(path, scalar_field, trajectories[0])
|
119 |
yield {
|
120 |
-
trajectory_dropdown: gr.Dropdown(
|
121 |
-
|
122 |
-
|
|
|
123 |
}
|
124 |
-
yield {gallery: gr.Gallery(selected_index=len(default_images) // 2)}
|
125 |
|
126 |
-
@trajectory_dropdown.select(
|
|
|
|
|
|
|
127 |
def _update_trajectory(path: str, scalar_field: str, trajectory: int):
|
128 |
-
images = get_images(path, scalar_field, trajectory)
|
129 |
vid = get_video(path, scalar_field, trajectory)
|
130 |
-
yield {
|
131 |
-
|
132 |
|
133 |
-
demo.launch()
|
|
|
13 |
# - x: 128 to 512
|
14 |
# - y: 128 to 512
|
15 |
# - physical fields: 2 to 8 (density, pressure, energy, velocity…)
|
|
|
|
|
16 |
import gradio as gr
|
17 |
import h5py
|
18 |
import numpy as np
|
|
|
20 |
from matplotlib import cm
|
21 |
from PIL import Image
|
22 |
import av
|
23 |
+
from tempfile import gettempdir
|
24 |
+
import os
|
25 |
+
|
26 |
+
# Get the path of the system's temporary directory
|
27 |
+
temp_directory = gettempdir()
|
28 |
+
print(f"System's temporary directory is: {temp_directory}")
|
29 |
+
videos_temp_directory = os.path.join(temp_directory, "videos")
|
30 |
+
print(f"Videos are saved (and never deleted) in: {videos_temp_directory}")
|
31 |
|
32 |
+
# TODO: add colormap input
|
33 |
|
34 |
repo_id = "lhoestq/turbulent_radiative_layer_tcool_demo"
|
35 |
set_path = f"hf://datasets/{repo_id}/**/*.hdf5"
|
|
|
37 |
paths = fs.glob(set_path)
|
38 |
files = {path: h5py.File(fs.open(path, "rb", cache_type="none"), "r") for path in paths}
|
39 |
|
40 |
+
|
41 |
def get_scalar_fields(path: str) -> list[str]:
|
42 |
# TODO: support t1_fields (vector) and t2_fields (tensor)
|
43 |
return list(files[path]["t0_fields"].keys())
|
44 |
|
45 |
+
|
46 |
def get_trajectories(path: str, field: str) -> list[int]:
|
47 |
# The first dimension is the trajectory (8 to 256)
|
48 |
return list(range(len(files[path]["t0_fields"][field])))
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
fps = 25
|
|
|
|
|
|
|
52 |
|
53 |
+
|
54 |
+
def create_video(
|
55 |
+
path: str, scalar_field: str, trajectory: int, video_filename: str
|
56 |
+
) -> None:
|
57 |
out = files[path]["t0_fields"][scalar_field][trajectory]
|
58 |
+
# out = np.log(out) # not sure why
|
59 |
out = (out - out.min()) / (out.max() - out.min())
|
60 |
+
out = np.uint8(cm.viridis(out) * 255)
|
61 |
+
|
62 |
+
output = av.open(video_filename, "w")
|
63 |
+
stream = output.add_stream("libvpx-vp9", str(fps))
|
64 |
+
height, width = out[0].shape[1], out[0].shape[0]
|
65 |
stream.width = width
|
66 |
stream.height = height
|
67 |
+
stream.pix_fmt = "yuv444p"
|
|
|
68 |
|
69 |
for img in out:
|
70 |
+
image = Image.fromarray(img)
|
71 |
+
# I think it's the way to get the expected orientation
|
72 |
+
image = image.transpose(method=Image.Transpose.TRANSPOSE)
|
73 |
+
image = image.transpose(method=Image.Transpose.FLIP_TOP_BOTTOM)
|
74 |
+
frame = av.VideoFrame.from_image(image)
|
75 |
+
packet = stream.encode(frame)
|
76 |
+
output.mux(packet)
|
77 |
|
78 |
# Flush the encoder and close the "in memory" file:
|
79 |
packet = stream.encode(None)
|
80 |
output.mux(packet)
|
81 |
output.close()
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
+
# no limit on the size of the videos on the disk
|
85 |
+
def get_video(path: str, scalar_field: str, trajectory: int) -> str:
|
86 |
+
video_filename = os.path.join(
|
87 |
+
videos_temp_directory, *path.split("/"), scalar_field, f"{trajectory}.webm"
|
88 |
+
)
|
89 |
+
os.makedirs(os.path.dirname(video_filename), exist_ok=True)
|
90 |
+
if not os.path.isfile(video_filename):
|
91 |
+
create_video(path, scalar_field, trajectory, video_filename)
|
92 |
+
return video_filename
|
93 |
+
|
94 |
|
95 |
with gr.Blocks() as demo:
|
96 |
+
default_scalar_fields = get_scalar_fields(paths[0])
|
97 |
+
default_trajectories = get_trajectories(paths[0], default_scalar_fields[0])
|
98 |
+
default_video = get_video(
|
99 |
+
paths[0], default_scalar_fields[0], default_trajectories[0]
|
100 |
+
)
|
101 |
+
|
102 |
+
gr.Markdown(
|
103 |
+
f"# 💠 HDF5 Viewer for the [{repo_id}](https://huggingface.co/datasets/{repo_id}) Dataset 🌊"
|
104 |
+
)
|
105 |
gr.Markdown(f"Showing files at `{set_path}`")
|
106 |
with gr.Row():
|
107 |
+
files_dropdown = gr.Dropdown(
|
108 |
+
choices=paths, value=paths[0], label="File", scale=4
|
109 |
+
)
|
110 |
+
scalar_fields_dropdown = gr.Dropdown(
|
111 |
+
choices=default_scalar_fields,
|
112 |
+
value=default_scalar_fields[0],
|
113 |
+
label="Physical field",
|
114 |
+
)
|
115 |
+
trajectory_dropdown = gr.Dropdown(
|
116 |
+
choices=default_trajectories,
|
117 |
+
value=default_trajectories[0],
|
118 |
+
label="Trajectory",
|
119 |
+
)
|
120 |
+
video = gr.Video(default_video, height=400)
|
121 |
+
|
122 |
+
@files_dropdown.select(
|
123 |
+
inputs=[files_dropdown],
|
124 |
+
outputs=[scalar_fields_dropdown, trajectory_dropdown, video],
|
125 |
+
)
|
126 |
def _update_file(path: str):
|
127 |
scalar_fields = get_scalar_fields(path)
|
128 |
trajectories = get_trajectories(path, scalar_fields[0])
|
|
|
129 |
vid = get_video(path, scalar_fields[0], trajectories[0])
|
130 |
yield {
|
131 |
+
scalar_fields_dropdown: gr.Dropdown(
|
132 |
+
choices=scalar_fields, value=scalar_fields[0]
|
133 |
+
),
|
134 |
+
trajectory_dropdown: gr.Dropdown(
|
135 |
+
choices=trajectories, value=trajectories[0]
|
136 |
+
),
|
137 |
+
video: gr.Video(vid),
|
138 |
}
|
139 |
+
|
140 |
+
@scalar_fields_dropdown.select(
|
141 |
+
inputs=[files_dropdown, scalar_fields_dropdown],
|
142 |
+
outputs=[trajectory_dropdown, video],
|
143 |
+
)
|
144 |
def _update_scalar_field(path: str, scalar_field: str):
|
145 |
trajectories = get_trajectories(path, scalar_field)
|
|
|
146 |
vid = get_video(path, scalar_field, trajectories[0])
|
147 |
yield {
|
148 |
+
trajectory_dropdown: gr.Dropdown(
|
149 |
+
choices=trajectories, value=trajectories[0]
|
150 |
+
),
|
151 |
+
video: gr.Video(vid),
|
152 |
}
|
|
|
153 |
|
154 |
+
@trajectory_dropdown.select(
|
155 |
+
inputs=[files_dropdown, scalar_fields_dropdown, trajectory_dropdown],
|
156 |
+
outputs=[video],
|
157 |
+
)
|
158 |
def _update_trajectory(path: str, scalar_field: str, trajectory: int):
|
|
|
159 |
vid = get_video(path, scalar_field, trajectory)
|
160 |
+
yield {video: gr.Video(vid)}
|
161 |
+
|
162 |
|
163 |
+
demo.launch()
|