File size: 2,465 Bytes
71c9afb 226cc7a 71c9afb 226cc7a 71c9afb 226cc7a 71c9afb 226cc7a 71c9afb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
from torchvision.transforms import Normalize
import torchvision.transforms as T
import torch.nn as nn
from PIL import Image
import numpy as np
import torch
import timm
from tqdm import tqdm
# https://github.com/Whiax/NSFW-Classifier/raw/main/nsfwmodel_281.pth
normalize_t = Normalize((0.4814, 0.4578, 0.4082), (0.2686, 0.2613, 0.2757))
#nsfw classifier
class NSFWClassifier(nn.Module):
def __init__(self):
super().__init__()
nsfw_model=self
nsfw_model.root_model = timm.create_model('convnext_base_in22ft1k', pretrained=True)
nsfw_model.linear_probe = nn.Linear(1024, 1, bias=False)
def forward(self, x):
nsfw_model = self
x = normalize_t(x)
x = nsfw_model.root_model.stem(x)
x = nsfw_model.root_model.stages(x)
x = nsfw_model.root_model.head.global_pool(x)
x = nsfw_model.root_model.head.norm(x)
x = nsfw_model.root_model.head.flatten(x)
x = nsfw_model.linear_probe(x)
return x
def is_nsfw(self, img_paths, threshold = 0.98):
skip_step = 1
total_len = len(img_paths)
if total_len < 100: skip_step = 1
if total_len > 100 and total_len < 500: skip_step = 10
if total_len > 500 and total_len < 1000: skip_step = 20
if total_len > 1000 and total_len < 10000: skip_step = 50
if total_len > 10000: skip_step = 100
for idx in tqdm(range(0, total_len, skip_step), total=int(total_len // skip_step), desc="Checking for NSFW contents"):
_img = Image.open(img_paths[idx]).convert('RGB')
img = _img.resize((224, 224))
img = np.array(img)/255
img = T.ToTensor()(img).unsqueeze(0).float()
if next(self.parameters()).is_cuda:
img = img.cuda()
with torch.no_grad():
score = self.forward(img).sigmoid()[0].item()
if score > threshold:
print(f"Detected nsfw score:{score}")
_img.save("nsfw.jpg")
return True
return False
def get_nsfw_detector(model_path='nsfwmodel_281.pth', device="cpu"):
#load base model
nsfw_model = NSFWClassifier()
nsfw_model = nsfw_model.eval()
#load linear weights
linear_pth = model_path
linear_state_dict = torch.load(linear_pth, map_location='cpu')
nsfw_model.linear_probe.load_state_dict(linear_state_dict)
nsfw_model = nsfw_model.to(device)
return nsfw_model
|