File size: 2,404 Bytes
71c9afb db275a2 71c9afb 226cc7a db275a2 226cc7a 71c9afb db275a2 71c9afb 226cc7a 71c9afb db275a2 71c9afb 226cc7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import os
import cv2
import torch
import gfpgan
from PIL import Image
from upscaler.RealESRGAN import RealESRGAN
def gfpgan_runner(img, model):
_, imgs, _ = model.enhance(img, paste_back=True, has_aligned=True)
return imgs[0]
def realesrgan_runner(img, model):
img = model.predict(img)
return img
supported_enhancers = {
"GFPGAN": ("./assets/pretrained_models/GFPGANv1.4.pth", gfpgan_runner),
"REAL-ESRGAN 2x": ("./assets/pretrained_models/RealESRGAN_x2.pth", realesrgan_runner),
"REAL-ESRGAN 4x": ("./assets/pretrained_models/RealESRGAN_x4.pth", realesrgan_runner),
"REAL-ESRGAN 8x": ("./assets/pretrained_models/RealESRGAN_x8.pth", realesrgan_runner)
}
cv2_interpolations = ["LANCZOS4", "CUBIC", "NEAREST"]
def get_available_enhancer_names():
available = []
for name, data in supported_enhancers.items():
path = os.path.join(os.path.abspath(os.path.dirname(__file__)), data[0])
if os.path.exists(path):
available.append(name)
return available
def load_face_enhancer_model(name='GFPGAN', device="cpu"):
assert name in get_available_enhancer_names() + cv2_interpolations, f"Face enhancer {name} unavailable."
if name in supported_enhancers.keys():
model_path, model_runner = supported_enhancers.get(name)
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
if name == 'GFPGAN':
model = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=device)
elif name == 'REAL-ESRGAN 2x':
model = RealESRGAN(device, scale=2)
model.load_weights(model_path, download=False)
elif name == 'REAL-ESRGAN 4x':
model = RealESRGAN(device, scale=4)
model.load_weights(model_path, download=False)
elif name == 'REAL-ESRGAN 8x':
model = RealESRGAN(device, scale=8)
model.load_weights(model_path, download=False)
elif name == 'LANCZOS4':
model = None
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_LANCZOS4)
elif name == 'CUBIC':
model = None
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_CUBIC)
elif name == 'NEAREST':
model = None
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_NEAREST)
else:
model = None
return (model, model_runner)
|