213 / face_parsing /parse_mask.py
Harisreedhar
update
71c9afb
raw
history blame
1.52 kB
import cv2
import torch
import torchvision
import numpy as np
import torch.nn as nn
from PIL import Image
from tqdm import tqdm
import torch.nn.functional as F
import torchvision.transforms as transforms
from . model import BiSeNet
transform = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
def init_parsing_model(model_path, device="cpu"):
net = BiSeNet(19)
net.to(device)
net.load_state_dict(torch.load(model_path))
net.eval()
return net
def transform_images(imgs):
tensor_images = torch.stack([transform(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))) for img in imgs], dim=0)
return tensor_images
def get_parsed_mask(net, imgs, classes=[1, 2, 3, 4, 5, 10, 11, 12, 13], device="cpu", batch_size=8):
masks = []
for i in tqdm(range(0, len(imgs), batch_size), total=len(imgs) // batch_size, desc="Face-parsing"):
batch_imgs = imgs[i:i + batch_size]
tensor_images = transform_images(batch_imgs).to(device)
with torch.no_grad():
out = net(tensor_images)[0]
parsing = out.argmax(dim=1).cpu().numpy()
batch_masks = np.isin(parsing, classes)
masks.append(batch_masks)
masks = np.concatenate(masks, axis=0)
# masks = np.repeat(np.expand_dims(masks, axis=1), 3, axis=1)
for i, mask in enumerate(masks):
cv2.imwrite(f"mask/{i}.jpg", (mask * 255).astype("uint8"))
return masks