|
from typing import Any, Dict |
|
from functools import lru_cache |
|
import threading |
|
import cv2 |
|
import numpy |
|
import onnxruntime |
|
from tqdm import tqdm |
|
|
|
import facefusion.globals |
|
from facefusion import wording |
|
from facefusion.typing import Frame, ModelValue |
|
from facefusion.vision import get_video_frame, count_video_frame_total, read_image, detect_fps |
|
from facefusion.utilities import resolve_relative_path, conditional_download |
|
|
|
CONTENT_ANALYSER = None |
|
THREAD_LOCK : threading.Lock = threading.Lock() |
|
MODELS : Dict[str, ModelValue] =\ |
|
{ |
|
'open_nsfw': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/open_nsfw.onnx', |
|
'path': resolve_relative_path('../.assets/models/open_nsfw.onnx') |
|
} |
|
} |
|
MAX_PROBABILITY = 0.80 |
|
MAX_RATE = 5 |
|
STREAM_COUNTER = 0 |
|
|
|
|
|
def get_content_analyser() -> Any: |
|
global CONTENT_ANALYSER |
|
|
|
with THREAD_LOCK: |
|
if CONTENT_ANALYSER is None: |
|
model_path = MODELS.get('open_nsfw').get('path') |
|
CONTENT_ANALYSER = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers) |
|
return CONTENT_ANALYSER |
|
|
|
|
|
def clear_content_analyser() -> None: |
|
global CONTENT_ANALYSER |
|
|
|
CONTENT_ANALYSER = None |
|
|
|
|
|
def pre_check() -> bool: |
|
if not facefusion.globals.skip_download: |
|
download_directory_path = resolve_relative_path('../.assets/models') |
|
model_url = MODELS.get('open_nsfw').get('url') |
|
conditional_download(download_directory_path, [ model_url ]) |
|
return True |
|
|
|
|
|
def analyse_stream(frame : Frame, fps : float) -> bool: |
|
global STREAM_COUNTER |
|
|
|
STREAM_COUNTER = STREAM_COUNTER + 1 |
|
if STREAM_COUNTER % int(fps) == 0: |
|
return analyse_frame(frame) |
|
return False |
|
|
|
|
|
def prepare_frame(frame : Frame) -> Frame: |
|
frame = cv2.resize(frame, (224, 224)).astype(numpy.float32) |
|
frame -= numpy.array([ 104, 117, 123 ]).astype(numpy.float32) |
|
frame = numpy.expand_dims(frame, axis = 0) |
|
return frame |
|
|
|
|
|
def analyse_frame(frame : Frame) -> bool: |
|
return False |
|
|
|
|
|
@lru_cache(maxsize = None) |
|
def analyse_image(image_path : str) -> bool: |
|
frame = read_image(image_path) |
|
return analyse_frame(frame) |
|
|
|
|
|
@lru_cache(maxsize = None) |
|
def analyse_video(video_path : str, start_frame : int, end_frame : int) -> bool: |
|
video_frame_total = count_video_frame_total(video_path) |
|
fps = detect_fps(video_path) |
|
frame_range = range(start_frame or 0, end_frame or video_frame_total) |
|
rate = 0.0 |
|
counter = 0 |
|
with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =') as progress: |
|
for frame_number in frame_range: |
|
if frame_number % int(fps) == 0: |
|
frame = get_video_frame(video_path, frame_number) |
|
if analyse_frame(frame): |
|
counter += 1 |
|
rate = counter * int(fps) / len(frame_range) * 100 |
|
progress.update() |
|
progress.set_postfix(rate = rate) |
|
return rate > MAX_RATE |
|
|