|
from typing import Any, List, Dict, Literal, Optional |
|
from argparse import ArgumentParser |
|
import cv2 |
|
import threading |
|
import numpy |
|
import onnxruntime |
|
|
|
import facefusion.globals |
|
import facefusion.processors.frame.core as frame_processors |
|
from facefusion import wording |
|
from facefusion.face_analyser import get_many_faces, clear_face_analyser |
|
from facefusion.face_helper import warp_face, paste_back |
|
from facefusion.content_analyser import clear_content_analyser |
|
from facefusion.typing import Face, Frame, Update_Process, ProcessMode, ModelValue, OptionsWithModel |
|
from facefusion.utilities import conditional_download, resolve_relative_path, is_image, is_video, is_file, is_download_done, create_metavar, update_status |
|
from facefusion.vision import read_image, read_static_image, write_image |
|
from facefusion.processors.frame import globals as frame_processors_globals |
|
from facefusion.processors.frame import choices as frame_processors_choices |
|
|
|
FRAME_PROCESSOR = None |
|
THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore() |
|
THREAD_LOCK : threading.Lock = threading.Lock() |
|
NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_ENHANCER' |
|
MODELS : Dict[str, ModelValue] =\ |
|
{ |
|
'codeformer': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/codeformer.onnx', |
|
'path': resolve_relative_path('../.assets/models/codeformer.onnx'), |
|
'template': 'ffhq', |
|
'size': (512, 512) |
|
}, |
|
'gfpgan_1.2': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.2.onnx', |
|
'path': resolve_relative_path('../.assets/models/gfpgan_1.2.onnx'), |
|
'template': 'ffhq', |
|
'size': (512, 512) |
|
}, |
|
'gfpgan_1.3': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.3.onnx', |
|
'path': resolve_relative_path('../.assets/models/gfpgan_1.3.onnx'), |
|
'template': 'ffhq', |
|
'size': (512, 512) |
|
}, |
|
'gfpgan_1.4': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.4.onnx', |
|
'path': resolve_relative_path('../.assets/models/gfpgan_1.4.onnx'), |
|
'template': 'ffhq', |
|
'size': (512, 512) |
|
}, |
|
'gpen_bfr_256': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_256.onnx', |
|
'path': resolve_relative_path('../.assets/models/gpen_bfr_256.onnx'), |
|
'template': 'arcface_v2', |
|
'size': (128, 256) |
|
}, |
|
'gpen_bfr_512': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_512.onnx', |
|
'path': resolve_relative_path('../.assets/models/gpen_bfr_512.onnx'), |
|
'template': 'ffhq', |
|
'size': (512, 512) |
|
}, |
|
'restoreformer': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/restoreformer.onnx', |
|
'path': resolve_relative_path('../.assets/models/restoreformer.onnx'), |
|
'template': 'ffhq', |
|
'size': (512, 512) |
|
} |
|
} |
|
OPTIONS : Optional[OptionsWithModel] = None |
|
|
|
|
|
def get_frame_processor() -> Any: |
|
global FRAME_PROCESSOR |
|
|
|
with THREAD_LOCK: |
|
if FRAME_PROCESSOR is None: |
|
model_path = get_options('model').get('path') |
|
FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers) |
|
return FRAME_PROCESSOR |
|
|
|
|
|
def clear_frame_processor() -> None: |
|
global FRAME_PROCESSOR |
|
|
|
FRAME_PROCESSOR = None |
|
|
|
|
|
def get_options(key : Literal['model']) -> Any: |
|
global OPTIONS |
|
|
|
if OPTIONS is None: |
|
OPTIONS =\ |
|
{ |
|
'model': MODELS[frame_processors_globals.face_enhancer_model] |
|
} |
|
return OPTIONS.get(key) |
|
|
|
|
|
def set_options(key : Literal['model'], value : Any) -> None: |
|
global OPTIONS |
|
|
|
OPTIONS[key] = value |
|
|
|
|
|
def register_args(program : ArgumentParser) -> None: |
|
program.add_argument('--face-enhancer-model', help = wording.get('frame_processor_model_help'), dest = 'face_enhancer_model', default = 'gfpgan_1.4', choices = frame_processors_choices.face_enhancer_models) |
|
program.add_argument('--face-enhancer-blend', help = wording.get('frame_processor_blend_help'), dest = 'face_enhancer_blend', type = int, default = 80, choices = frame_processors_choices.face_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.face_enhancer_blend_range)) |
|
|
|
|
|
def apply_args(program : ArgumentParser) -> None: |
|
args = program.parse_args() |
|
frame_processors_globals.face_enhancer_model = args.face_enhancer_model |
|
frame_processors_globals.face_enhancer_blend = args.face_enhancer_blend |
|
|
|
|
|
def pre_check() -> bool: |
|
if not facefusion.globals.skip_download: |
|
download_directory_path = resolve_relative_path('../.assets/models') |
|
model_url = get_options('model').get('url') |
|
conditional_download(download_directory_path, [ model_url ]) |
|
return True |
|
|
|
|
|
def pre_process(mode : ProcessMode) -> bool: |
|
model_url = get_options('model').get('url') |
|
model_path = get_options('model').get('path') |
|
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path): |
|
update_status(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME) |
|
return False |
|
elif not is_file(model_path): |
|
update_status(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME) |
|
return False |
|
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path): |
|
update_status(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME) |
|
return False |
|
if mode == 'output' and not facefusion.globals.output_path: |
|
update_status(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME) |
|
return False |
|
return True |
|
|
|
|
|
def post_process() -> None: |
|
clear_frame_processor() |
|
clear_face_analyser() |
|
clear_content_analyser() |
|
read_static_image.cache_clear() |
|
|
|
|
|
def enhance_face(target_face: Face, temp_frame: Frame) -> Frame: |
|
frame_processor = get_frame_processor() |
|
model_template = get_options('model').get('template') |
|
model_size = get_options('model').get('size') |
|
crop_frame, affine_matrix = warp_face(temp_frame, target_face.kps, model_template, model_size) |
|
crop_frame = prepare_crop_frame(crop_frame) |
|
frame_processor_inputs = {} |
|
for frame_processor_input in frame_processor.get_inputs(): |
|
if frame_processor_input.name == 'input': |
|
frame_processor_inputs[frame_processor_input.name] = crop_frame |
|
if frame_processor_input.name == 'weight': |
|
frame_processor_inputs[frame_processor_input.name] = numpy.array([ 1 ], dtype = numpy.double) |
|
with THREAD_SEMAPHORE: |
|
crop_frame = frame_processor.run(None, frame_processor_inputs)[0][0] |
|
crop_frame = normalize_crop_frame(crop_frame) |
|
paste_frame = paste_back(temp_frame, crop_frame, affine_matrix, facefusion.globals.face_mask_blur, (0, 0, 0, 0)) |
|
temp_frame = blend_frame(temp_frame, paste_frame) |
|
return temp_frame |
|
|
|
|
|
def prepare_crop_frame(crop_frame : Frame) -> Frame: |
|
crop_frame = crop_frame[:, :, ::-1] / 255.0 |
|
crop_frame = (crop_frame - 0.5) / 0.5 |
|
crop_frame = numpy.expand_dims(crop_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) |
|
return crop_frame |
|
|
|
|
|
def normalize_crop_frame(crop_frame : Frame) -> Frame: |
|
crop_frame = numpy.clip(crop_frame, -1, 1) |
|
crop_frame = (crop_frame + 1) / 2 |
|
crop_frame = crop_frame.transpose(1, 2, 0) |
|
crop_frame = (crop_frame * 255.0).round() |
|
crop_frame = crop_frame.astype(numpy.uint8)[:, :, ::-1] |
|
return crop_frame |
|
|
|
|
|
def blend_frame(temp_frame : Frame, paste_frame : Frame) -> Frame: |
|
face_enhancer_blend = 1 - (frame_processors_globals.face_enhancer_blend / 100) |
|
temp_frame = cv2.addWeighted(temp_frame, face_enhancer_blend, paste_frame, 1 - face_enhancer_blend, 0) |
|
return temp_frame |
|
|
|
|
|
def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame: |
|
many_faces = get_many_faces(temp_frame) |
|
if many_faces: |
|
for target_face in many_faces: |
|
temp_frame = enhance_face(target_face, temp_frame) |
|
return temp_frame |
|
|
|
|
|
def process_frames(source_path : str, temp_frame_paths : List[str], update_progress : Update_Process) -> None: |
|
for temp_frame_path in temp_frame_paths: |
|
temp_frame = read_image(temp_frame_path) |
|
result_frame = process_frame(None, None, temp_frame) |
|
write_image(temp_frame_path, result_frame) |
|
update_progress() |
|
|
|
|
|
def process_image(source_path : str, target_path : str, output_path : str) -> None: |
|
target_frame = read_static_image(target_path) |
|
result_frame = process_frame(None, None, target_frame) |
|
write_image(output_path, result_frame) |
|
|
|
|
|
def process_video(source_path : str, temp_frame_paths : List[str]) -> None: |
|
frame_processors.multi_process_frames(None, temp_frame_paths, process_frames) |
|
|