leonelhs's picture
init space
02c4dcb
from typing import Any, List, Dict, Literal, Optional
from argparse import ArgumentParser
import threading
import numpy
import onnx
import onnxruntime
from onnx import numpy_helper
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_helper import warp_face, paste_back
from facefusion.face_reference import get_face_reference
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, Frame, Update_Process, ProcessMode, ModelValue, OptionsWithModel, Embedding
from facefusion.utilities import conditional_download, resolve_relative_path, is_image, is_video, is_file, is_download_done, update_status
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
FRAME_PROCESSOR = None
MODEL_MATRIX = None
THREAD_LOCK : threading.Lock = threading.Lock()
NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_SWAPPER'
MODELS : Dict[str, ModelValue] =\
{
'blendface_256':
{
'type': 'blendface',
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/blendface_256.onnx',
'path': resolve_relative_path('../.assets/models/blendface_256.onnx'),
'template': 'ffhq',
'size': (512, 256),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'inswapper_128':
{
'type': 'inswapper',
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/inswapper_128.onnx',
'path': resolve_relative_path('../.assets/models/inswapper_128.onnx'),
'template': 'arcface_v2',
'size': (128, 128),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'inswapper_128_fp16':
{
'type': 'inswapper',
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/inswapper_128_fp16.onnx',
'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.onnx'),
'template': 'arcface_v2',
'size': (128, 128),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'simswap_256':
{
'type': 'simswap',
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/simswap_256.onnx',
'path': resolve_relative_path('../.assets/models/simswap_256.onnx'),
'template': 'arcface_v1',
'size': (112, 256),
'mean': [ 0.485, 0.456, 0.406 ],
'standard_deviation': [ 0.229, 0.224, 0.225 ]
},
'simswap_512_unofficial':
{
'type': 'simswap',
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/simswap_512_unofficial.onnx',
'path': resolve_relative_path('../.assets/models/simswap_512_unofficial.onnx'),
'template': 'arcface_v1',
'size': (112, 512),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
}
}
OPTIONS : Optional[OptionsWithModel] = None
def get_frame_processor() -> Any:
global FRAME_PROCESSOR
with THREAD_LOCK:
if FRAME_PROCESSOR is None:
model_path = get_options('model').get('path')
FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers)
return FRAME_PROCESSOR
def clear_frame_processor() -> None:
global FRAME_PROCESSOR
FRAME_PROCESSOR = None
def get_model_matrix() -> Any:
global MODEL_MATRIX
with THREAD_LOCK:
if MODEL_MATRIX is None:
model_path = get_options('model').get('path')
model = onnx.load(model_path)
MODEL_MATRIX = numpy_helper.to_array(model.graph.initializer[-1])
return MODEL_MATRIX
def clear_model_matrix() -> None:
global MODEL_MATRIX
MODEL_MATRIX = None
def get_options(key : Literal['model']) -> Any:
global OPTIONS
if OPTIONS is None:
OPTIONS =\
{
'model': MODELS[frame_processors_globals.face_swapper_model]
}
return OPTIONS.get(key)
def set_options(key : Literal['model'], value : Any) -> None:
global OPTIONS
OPTIONS[key] = value
def register_args(program : ArgumentParser) -> None:
program.add_argument('--face-swapper-model', help = wording.get('frame_processor_model_help'), dest = 'face_swapper_model', default = 'inswapper_128', choices = frame_processors_choices.face_swapper_models)
def apply_args(program : ArgumentParser) -> None:
args = program.parse_args()
frame_processors_globals.face_swapper_model = args.face_swapper_model
if args.face_swapper_model == 'blendface_256':
facefusion.globals.face_recognizer_model = 'arcface_blendface'
if args.face_swapper_model == 'inswapper_128' or args.face_swapper_model == 'inswapper_128_fp16':
facefusion.globals.face_recognizer_model = 'arcface_inswapper'
if args.face_swapper_model == 'simswap_256' or args.face_swapper_model == 'simswap_512_unofficial':
facefusion.globals.face_recognizer_model = 'arcface_simswap'
def pre_check() -> bool:
if not facefusion.globals.skip_download:
download_directory_path = resolve_relative_path('../.assets/models')
model_url = get_options('model').get('url')
conditional_download(download_directory_path, [ model_url ])
return True
def pre_process(mode : ProcessMode) -> bool:
model_url = get_options('model').get('url')
model_path = get_options('model').get('path')
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
update_status(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
return False
elif not is_file(model_path):
update_status(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
return False
if not is_image(facefusion.globals.source_path):
update_status(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME)
return False
elif not get_one_face(read_static_image(facefusion.globals.source_path)):
update_status(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME)
return False
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
update_status(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
return False
if mode == 'output' and not facefusion.globals.output_path:
update_status(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
return False
return True
def post_process() -> None:
clear_frame_processor()
clear_model_matrix()
clear_face_analyser()
clear_content_analyser()
read_static_image.cache_clear()
def swap_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
frame_processor = get_frame_processor()
model_template = get_options('model').get('template')
model_size = get_options('model').get('size')
model_type = get_options('model').get('type')
crop_frame, affine_matrix = warp_face(temp_frame, target_face.kps, model_template, model_size)
crop_frame = prepare_crop_frame(crop_frame)
frame_processor_inputs = {}
for frame_processor_input in frame_processor.get_inputs():
if frame_processor_input.name == 'source':
if model_type == 'blendface':
frame_processor_inputs[frame_processor_input.name] = prepare_source_frame(source_face)
else:
frame_processor_inputs[frame_processor_input.name] = prepare_source_embedding(source_face)
if frame_processor_input.name == 'target':
frame_processor_inputs[frame_processor_input.name] = crop_frame
crop_frame = frame_processor.run(None, frame_processor_inputs)[0][0]
crop_frame = normalize_crop_frame(crop_frame)
temp_frame = paste_back(temp_frame, crop_frame, affine_matrix, facefusion.globals.face_mask_blur, facefusion.globals.face_mask_padding)
return temp_frame
def prepare_source_frame(source_face : Face) -> numpy.ndarray[Any, Any]:
source_frame = read_static_image(facefusion.globals.source_path)
source_frame, _ = warp_face(source_frame, source_face.kps, 'arcface_v2', (112, 112))
source_frame = source_frame[:, :, ::-1] / 255.0
source_frame = source_frame.transpose(2, 0, 1)
source_frame = numpy.expand_dims(source_frame, axis = 0).astype(numpy.float32)
return source_frame
def prepare_source_embedding(source_face : Face) -> Embedding:
model_type = get_options('model').get('type')
if model_type == 'inswapper':
model_matrix = get_model_matrix()
source_embedding = source_face.embedding.reshape((1, -1))
source_embedding = numpy.dot(source_embedding, model_matrix) / numpy.linalg.norm(source_embedding)
else:
source_embedding = source_face.normed_embedding.reshape(1, -1)
return source_embedding
def prepare_crop_frame(crop_frame : Frame) -> Frame:
model_mean = get_options('model').get('mean')
model_standard_deviation = get_options('model').get('standard_deviation')
crop_frame = crop_frame[:, :, ::-1] / 255.0
crop_frame = (crop_frame - model_mean) / model_standard_deviation
crop_frame = crop_frame.transpose(2, 0, 1)
crop_frame = numpy.expand_dims(crop_frame, axis = 0).astype(numpy.float32)
return crop_frame
def normalize_crop_frame(crop_frame : Frame) -> Frame:
crop_frame = crop_frame.transpose(1, 2, 0)
crop_frame = (crop_frame * 255.0).round()
crop_frame = crop_frame[:, :, ::-1].astype(numpy.uint8)
return crop_frame
def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
if 'reference' in facefusion.globals.face_selector_mode:
similar_faces = find_similar_faces(temp_frame, reference_face, facefusion.globals.reference_face_distance)
if similar_faces:
for similar_face in similar_faces:
temp_frame = swap_face(source_face, similar_face, temp_frame)
if 'one' in facefusion.globals.face_selector_mode:
target_face = get_one_face(temp_frame)
if target_face:
temp_frame = swap_face(source_face, target_face, temp_frame)
if 'many' in facefusion.globals.face_selector_mode:
many_faces = get_many_faces(temp_frame)
if many_faces:
for target_face in many_faces:
temp_frame = swap_face(source_face, target_face, temp_frame)
return temp_frame
def process_frames(source_path : str, temp_frame_paths : List[str], update_progress : Update_Process) -> None:
source_face = get_one_face(read_static_image(source_path))
reference_face = get_face_reference() if 'reference' in facefusion.globals.face_selector_mode else None
for temp_frame_path in temp_frame_paths:
temp_frame = read_image(temp_frame_path)
result_frame = process_frame(source_face, reference_face, temp_frame)
write_image(temp_frame_path, result_frame)
update_progress()
def process_image(source_path : str, target_path : str, output_path : str) -> None:
source_face = get_one_face(read_static_image(source_path))
target_frame = read_static_image(target_path)
reference_face = get_one_face(target_frame, facefusion.globals.reference_face_position) if 'reference' in facefusion.globals.face_selector_mode else None
result_frame = process_frame(source_face, reference_face, target_frame)
write_image(output_path, result_frame)
def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
frame_processors.multi_process_frames(source_path, temp_frame_paths, process_frames)