|
from typing import Any, List, Dict, Literal, Optional |
|
from argparse import ArgumentParser |
|
import threading |
|
import cv2 |
|
from basicsr.archs.rrdbnet_arch import RRDBNet |
|
from realesrgan import RealESRGANer |
|
|
|
import facefusion.globals |
|
import facefusion.processors.frame.core as frame_processors |
|
from facefusion import wording |
|
from facefusion.face_analyser import clear_face_analyser |
|
from facefusion.content_analyser import clear_content_analyser |
|
from facefusion.typing import Frame, Face, Update_Process, ProcessMode, ModelValue, OptionsWithModel |
|
from facefusion.utilities import conditional_download, resolve_relative_path, is_file, is_download_done, map_device, create_metavar, update_status |
|
from facefusion.vision import read_image, read_static_image, write_image |
|
from facefusion.processors.frame import globals as frame_processors_globals |
|
from facefusion.processors.frame import choices as frame_processors_choices |
|
|
|
FRAME_PROCESSOR = None |
|
THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore() |
|
THREAD_LOCK : threading.Lock = threading.Lock() |
|
NAME = 'FACEFUSION.FRAME_PROCESSOR.FRAME_ENHANCER' |
|
MODELS: Dict[str, ModelValue] =\ |
|
{ |
|
'real_esrgan_x2plus': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrgan_x2plus.pth', |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x2plus.pth'), |
|
'scale': 2 |
|
}, |
|
'real_esrgan_x4plus': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrgan_x4plus.pth', |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x4plus.pth'), |
|
'scale': 4 |
|
}, |
|
'real_esrnet_x4plus': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrnet_x4plus.pth', |
|
'path': resolve_relative_path('../.assets/models/real_esrnet_x4plus.pth'), |
|
'scale': 4 |
|
} |
|
} |
|
OPTIONS : Optional[OptionsWithModel] = None |
|
|
|
|
|
def get_frame_processor() -> Any: |
|
global FRAME_PROCESSOR |
|
|
|
with THREAD_LOCK: |
|
if FRAME_PROCESSOR is None: |
|
model_path = get_options('model').get('path') |
|
model_scale = get_options('model').get('scale') |
|
FRAME_PROCESSOR = RealESRGANer( |
|
model_path = model_path, |
|
model = RRDBNet( |
|
num_in_ch = 3, |
|
num_out_ch = 3, |
|
scale = model_scale |
|
), |
|
device = map_device(facefusion.globals.execution_providers), |
|
scale = model_scale |
|
) |
|
return FRAME_PROCESSOR |
|
|
|
|
|
def clear_frame_processor() -> None: |
|
global FRAME_PROCESSOR |
|
|
|
FRAME_PROCESSOR = None |
|
|
|
|
|
def get_options(key : Literal['model']) -> Any: |
|
global OPTIONS |
|
|
|
if OPTIONS is None: |
|
OPTIONS =\ |
|
{ |
|
'model': MODELS[frame_processors_globals.frame_enhancer_model] |
|
} |
|
return OPTIONS.get(key) |
|
|
|
|
|
def set_options(key : Literal['model'], value : Any) -> None: |
|
global OPTIONS |
|
|
|
OPTIONS[key] = value |
|
|
|
|
|
def register_args(program : ArgumentParser) -> None: |
|
program.add_argument('--frame-enhancer-model', help = wording.get('frame_processor_model_help'), dest = 'frame_enhancer_model', default = 'real_esrgan_x2plus', choices = frame_processors_choices.frame_enhancer_models) |
|
program.add_argument('--frame-enhancer-blend', help = wording.get('frame_processor_blend_help'), dest = 'frame_enhancer_blend', type = int, default = 80, choices = frame_processors_choices.frame_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.frame_enhancer_blend_range)) |
|
|
|
|
|
def apply_args(program : ArgumentParser) -> None: |
|
args = program.parse_args() |
|
frame_processors_globals.frame_enhancer_model = args.frame_enhancer_model |
|
frame_processors_globals.frame_enhancer_blend = args.frame_enhancer_blend |
|
|
|
|
|
def pre_check() -> bool: |
|
if not facefusion.globals.skip_download: |
|
download_directory_path = resolve_relative_path('../.assets/models') |
|
model_url = get_options('model').get('url') |
|
conditional_download(download_directory_path, [ model_url ]) |
|
return True |
|
|
|
|
|
def pre_process(mode : ProcessMode) -> bool: |
|
model_url = get_options('model').get('url') |
|
model_path = get_options('model').get('path') |
|
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path): |
|
update_status(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME) |
|
return False |
|
elif not is_file(model_path): |
|
update_status(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME) |
|
return False |
|
if mode == 'output' and not facefusion.globals.output_path: |
|
update_status(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME) |
|
return False |
|
return True |
|
|
|
|
|
def post_process() -> None: |
|
clear_frame_processor() |
|
clear_face_analyser() |
|
clear_content_analyser() |
|
read_static_image.cache_clear() |
|
|
|
|
|
def enhance_frame(temp_frame : Frame) -> Frame: |
|
with THREAD_SEMAPHORE: |
|
paste_frame, _ = get_frame_processor().enhance(temp_frame) |
|
temp_frame = blend_frame(temp_frame, paste_frame) |
|
return temp_frame |
|
|
|
|
|
def blend_frame(temp_frame : Frame, paste_frame : Frame) -> Frame: |
|
frame_enhancer_blend = 1 - (frame_processors_globals.frame_enhancer_blend / 100) |
|
paste_frame_height, paste_frame_width = paste_frame.shape[0:2] |
|
temp_frame = cv2.resize(temp_frame, (paste_frame_width, paste_frame_height)) |
|
temp_frame = cv2.addWeighted(temp_frame, frame_enhancer_blend, paste_frame, 1 - frame_enhancer_blend, 0) |
|
return temp_frame |
|
|
|
|
|
def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame: |
|
return enhance_frame(temp_frame) |
|
|
|
|
|
def process_frames(source_path : str, temp_frame_paths : List[str], update_progress : Update_Process) -> None: |
|
for temp_frame_path in temp_frame_paths: |
|
temp_frame = read_image(temp_frame_path) |
|
result_frame = process_frame(None, None, temp_frame) |
|
write_image(temp_frame_path, result_frame) |
|
update_progress() |
|
|
|
|
|
def process_image(source_path : str, target_path : str, output_path : str) -> None: |
|
target_frame = read_static_image(target_path) |
|
result = process_frame(None, None, target_frame) |
|
write_image(output_path, result) |
|
|
|
|
|
def process_video(source_path : str, temp_frame_paths : List[str]) -> None: |
|
frame_processors.multi_process_frames(None, temp_frame_paths, process_frames) |
|
|